People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcintosh-Grieve, Lynne
Offshore Renewable Energy Catapult
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Wear behaviour of laser cladded Ni-based WC composite coating for Inconel hot extrusion
Abstract
In forging, tooling costs make up a significant percentage of the total manufacturing cost. To combat tool failure, forging dies can be manufactured using or including layers of high wear-resistant alloys. The present work compares the manufacturing process challenges and wear response of traditional Nitriding to laser cladding using Ni-based WC on an H13 substrate for IN718 extrusion. The results have shown that machining of NiCrSiB + WC matrix material is problematic, both with regards to cutting tool wear and achievable surface finish. Assessment of pre- and post-extrusion Nitrided H13 and NiCrSiB + 30%WC laser clad dies shows more significant wear features in the case of the additively coated die. Crack formation and surface discontinuities attributed to the effects of material porosity and die heating are also discussed.