Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mcintosh-Grieve, Lynne

  • Google
  • 1
  • 3
  • 0

Offshore Renewable Energy Catapult

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Wear behaviour of laser cladded Ni-based WC composite coating for Inconel hot extrusioncitations

Places of action

Chart of shared publication
Blackwell, Paul
1 / 41 shared
Fitzpatrick, Stephen
1 / 14 shared
Falsafi, Javad
1 / 4 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Blackwell, Paul
  • Fitzpatrick, Stephen
  • Falsafi, Javad
OrganizationsLocationPeople

document

Wear behaviour of laser cladded Ni-based WC composite coating for Inconel hot extrusion

  • Blackwell, Paul
  • Fitzpatrick, Stephen
  • Mcintosh-Grieve, Lynne
  • Falsafi, Javad
Abstract

In forging, tooling costs make up a significant percentage of the total manufacturing cost. To combat tool failure, forging dies can be manufactured using or including layers of high wear-resistant alloys. The present work compares the manufacturing process challenges and wear response of traditional Nitriding to laser cladding using Ni-based WC on an H13 substrate for IN718 extrusion. The results have shown that machining of NiCrSiB + WC matrix material is problematic, both with regards to cutting tool wear and achievable surface finish. Assessment of pre- and post-extrusion Nitrided H13 and NiCrSiB + 30%WC laser clad dies shows more significant wear features in the case of the additively coated die. Crack formation and surface discontinuities attributed to the effects of material porosity and die heating are also discussed.

Topics
  • impedance spectroscopy
  • surface
  • crack
  • composite
  • porosity
  • forging
  • hot extrusion