People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Willaert, Ronnie
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017Gravity-Driven Adaptive Evolution of an Industrial Brewer’s Yeast Strain towards a Snowflake Phenotype in a 3D-Printed Mini Tower Fermentor
- 2009Kinetics and Thermodynamics of Glucose Isomerase Crystallizationcitations
- 2008The Role of Surface Diffusion in the Growth Mechanism of Triosephosphate Isomerase Crystals
- 2008Kinetic Roughening of Glucose Isomerase Crystals
- 2008The interaction of human serum albumin with titanium studied by means of atomic force microscopy
Places of action
Organizations | Location | People |
---|
article
Kinetics and Thermodynamics of Glucose Isomerase Crystallization
Abstract
peer reviewed ; A quantitative study using laser confocal microscopy combined with differential interference microscopy on the kinetics and thermodynamics of the crystallization of glucose isomerase is presented. Fundamental crystallization parameters are determined from the kinetics of step advancement and rates of two-dimensional (2D) nucleation. The ruling mass transfer pathway and accompanying activation barriers are discussed. In brief, the solubility exhibits normal temperature dependence and the crystallization enthalpy is the thermodynamic driving force. The diminishing entropic cost for higher PEG concentrations is attributed to water structuring and a decrease in water activity. The prominent step generation mechanism is homogeneous 2D nucleation for high supersaturations. At low driving forces 2D nucleation occurs on anomalously hyperactive sites and the step edge free energies for homogeneous and heterogeneous nucleation are determined. The number of nucleation centers for both mechanisms are estimated and from the density of nucleation centers we obtain for the activation barrier of adsorption ∼3.8 kJ mol-1. No step-step interaction is observed for interstep distances >70 nm. Theoretical fits of step velocity data suggest surface diffusion makes a non-negligible contribution to surface kinetics. From the temperature dependence of the step kinetic coefficient the activation barrier for crystallization was determined to be <22.4 kJ mol-1.