People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouville, Florian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Embedded 3D printing of microstructured multi-material compositescitations
- 20233D-printing of ceramic filaments with ductile metallic corescitations
- 2022Embedded 3D printing of Multi-material composites
- 2022Fracture of hierarchical multi-layered bioinspired compositescitations
- 2021Transparent materials with stiff and tough hierarchical structurescitations
- 2021Tough bioinspired composites that self-report damagecitations
- 2020Transparent Nacre‐like Composites Toughened through Mineral Bridgescitations
- 2019Transparent and tough bulk composites inspired by nacrecitations
- 2019Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites
- 2018Iron-based particles for the magnetically-triggered crack healing of bituminous materialscitations
- 2018Reply to the correspondence:" On the fracture toughness of bioinspired ceramic materials"
- 2017Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-like Composite Materialscitations
- 2015Magnetically assisted slip casting of bioinspired heterogeneous compositescitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Lightweight and stiff cellular ceramic structures by ice templatingcitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Templated Grain Growth in Macroporous Materialscitations
- 2013Self-assembly of anisotropic particles driven by ice growth : Mechanisms, applications and bioinspiration ; Auto-assemblage de particules anisotropes réalisé par croissance de cristaux de glace : Mécanismes, applications et bioinspiration
Places of action
Organizations | Location | People |
---|
document
Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites
Abstract
<p>The nacreous layer of mollusk shells holds design concepts that can effectively enhance the fracture resistance of lightweight brittle materials. Mineral bridges are known to increase the fracture resistance of nacre-inspired materials, but their role has been difficult to quantify. The challenge has been to isolate and control mineral bridge connectivity in a model composite with microstructures on the same scale as the biological material. In this study, we fabricate these tunable nacre-like composites from highly aligned alumina platelets, interconnected by titania mineral bridges and infiltrated with epoxy matrix phase, and experimentally quantify the influence of mineral bridge density on the fracture properties. Mineral bridge density from image analysis of composite cross sections was correlated with the fracture behavior in mechanical tests and a quantitative model was developed using the insight that shear lag describes the stress transfer through the mineral phase. This model quantitatively describes the relationship between the fracture strength of the composite, platelet strength, and mineral bridge density, which provides powerful guidelines for the design of lightweight brittle materials with enhanced fracture resistance. We illustrate this potential by fabricating nacre-like bulk composites with unparalleled fracture strength, 20% stronger than the previously reported materials.</p>