Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fuentes, C.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Mechanical properties of tough plasma treated flax fibre thermoplastic compositescitations

Places of action

Chart of shared publication
Masania, Kunal
1 / 34 shared
Hegemann, D.
1 / 10 shared
Rion, J.
1 / 6 shared
Dransfeld, Clemens
1 / 32 shared
Vuure, A. W. Van
1 / 7 shared
Woigk, W.
1 / 7 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Masania, Kunal
  • Hegemann, D.
  • Rion, J.
  • Dransfeld, Clemens
  • Vuure, A. W. Van
  • Woigk, W.
OrganizationsLocationPeople

document

Mechanical properties of tough plasma treated flax fibre thermoplastic composites

  • Fuentes, C.
  • Masania, Kunal
  • Hegemann, D.
  • Rion, J.
  • Dransfeld, Clemens
  • Vuure, A. W. Van
  • Woigk, W.
Abstract

<p>Natural fibres (NF) have shown to be a suitable alternative to glass fibres as reinforcing material in polymer composites since they offer similar specific strength and stiffness. Thus, those composites may be readily used in the automotive, sport and leisure. However, most of today's natural fibre applications are based on discontinuous fibre architectures, underrunning the performance of continuous synthetic fibre composites. Flax fibres show a great potential to be used as continuous reinforcing fibres in thermoplastic matrix composites. The use of high performance engineering polymers and the application of preceding plasma-based fibre surface treatments may further enhance the mechanical properties, making flax fibre thermoplastic composites an environmentally friendly alternative. We investigated the mechanical behaviour of pure flax fibres, introduced an engineering polymer as matrix system, compared this material to commonly used matrices such as epoxy or polypropylene and studied the effect of two different plasma treatments on the mechanical performance of natural fibre composites (NFC). The influence of the plasma methods was found through composite failure testing. Results have shown, that composites with plasma treated fibres and engineering polymers along with a high fibre volume content offer a great potential as environmentally sustainable substitutes for synthetic composites in many applications.</p>

Topics
  • surface
  • glass
  • glass
  • strength
  • composite
  • thermoplastic