People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dransfeld, Clemens
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024A multiscale consolidation model for press molding of hybrid textiles into complex geometriescitations
- 2024Friction Dynamics In Mechanical Bar Spreading For Unidirectional Thin-Ply Carbon Fiber
- 2024Microstructural Analysis Of Unidirectional Composites
- 2024Microstructural analysis of unidirectional composites: a comparison of data reduction schemes
- 2024On the Influence of Welding Parameters and Their Interdependence During Robotic Continuous Ultrasonic Welding of Carbon Fibre Reinforced Thermoplastics
- 2024Bio-Based Epoxies
- 2023ECCM Research Topic on advanced manufacturing of composites
- 2023A model for the consolidation of hybrid textiles considering air entrapment, dissolution and diffusioncitations
- 2022Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy compositescitations
- 2022The role of matrix boundary in the microstructure of unidirectional composites
- 2022Novel tooling for direct melt impregnation of textile with variotherm injection moulding: Methodology and proof of conceptcitations
- 2022Co-cured carbon fibre/epoxy composite joints by advanced thermoplastic films with excellent structural integrity and thermal resistancecitations
- 2021Solving the inverse Knudsen problem: gas diffusion in random fibrous mediacitations
- 2021Characterising microstructural organisation in unidirectional compositescitations
- 2021Experimental and numerical investigation of ply size effects of steel foil reinforced compositescitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2019Fabrication of flax fibre-reinforced cellulose propionate thermoplastic compositescitations
- 2019Fabrication and design of wood-based high-performance compositescitations
- 2019Densified cellulose materials and delignified wood reinforced composites
- 2018Predicting the adhesion strength of thermoplastic/glass interfaces from wetting measurementscitations
- 2018Interfacial interactions in bicomponent polymer fiberscitations
- 2018Local reinforcement of aerospace structures using co-curing RTM of metal foil hybrid compositescitations
- 2017Damping of carbon fibre and flax fibre angle-ply composite laminatescitations
- 2017Wettability and interphase adhesion of molten thermoplastics on glass fibres
- 2017Rheological modelling of thermoset composite processingcitations
- 2016Damping of carbon fibre and flax fibre reinforced angle ply polymers
- 2016Mechanical properties of tough plasma treated flax fibre thermoplastic composites
- 2016Effect of fibre volume content on the mechanical performance of natural fibre reinforced thermoplastic composites
- 2015Experimental study of the stress transfer in discontinuous composites on the basis of a unit cell model
- 2015Steel foil reinforced composites
Places of action
Organizations | Location | People |
---|
document
Mechanical properties of tough plasma treated flax fibre thermoplastic composites
Abstract
<p>Natural fibres (NF) have shown to be a suitable alternative to glass fibres as reinforcing material in polymer composites since they offer similar specific strength and stiffness. Thus, those composites may be readily used in the automotive, sport and leisure. However, most of today's natural fibre applications are based on discontinuous fibre architectures, underrunning the performance of continuous synthetic fibre composites. Flax fibres show a great potential to be used as continuous reinforcing fibres in thermoplastic matrix composites. The use of high performance engineering polymers and the application of preceding plasma-based fibre surface treatments may further enhance the mechanical properties, making flax fibre thermoplastic composites an environmentally friendly alternative. We investigated the mechanical behaviour of pure flax fibres, introduced an engineering polymer as matrix system, compared this material to commonly used matrices such as epoxy or polypropylene and studied the effect of two different plasma treatments on the mechanical performance of natural fibre composites (NFC). The influence of the plasma methods was found through composite failure testing. Results have shown, that composites with plasma treated fibres and engineering polymers along with a high fibre volume content offer a great potential as environmentally sustainable substitutes for synthetic composites in many applications.</p>