People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duplan, Yannick
Université Grenoble Alpes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Investigation of the multiple-fragmentation process and post-fragmentation behaviour of dense and nacre-like alumina ceramics by means of tandem impact experiments and tomographic analysis ; Examination du processus de fragmentation multiple et du comportement post-fragmentation de céramiques d'alumine dense et nacrée au moyen d'expériences d'impact tandem et d'analyse tomographiquecitations
- 2021Ultra-high speed X-ray imaging of dynamic fracturing in cementitious materials under impact ; Imagerie aux rayons X ultra-rapide de la fracturation dynamique dans des matériaux cimentaires sous impactcitations
- 2020Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlation
- 2020 Caractérisation expérimentale et modélisation des propriétés de rupture et de fragmentation dynamiques d'un noyau de munition et de céramiques à blindage
- 2020Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlation ; Comparaison de deux techniques de traitement pour caractériser la vitesse de fissuration dynamique dans la céramique de blindage basée sur la corrélation d'images numériques
- 2019Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample ; Identification des Paramètres du Modèle de Johnson-Cook d'un Noyau de Projectile AB (Anti-Blindage) Basée sur Deux Échantillons Compression-Cisaillement et une Géométrie en Os de Chien
- 2019Numerical Investigation of Damage and Failure Modes Induced in a Bilayer Configuration Subjected to Ballistic Limit Velocity Test
- 2019 Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample
- 2018Numerical analysis of a testing technique to investigate the dynamic crack propagation in armour ceramic ; Analyse numérique d'une technique d'essai pour évaluer la propagation dynamique d'une fissure dans les blindages céramiques
- 2018 Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample
- 2017A testing technique to investigate the dynamic crack propagation in armour ceramic - Numerical analysis through « Rockspall »
Places of action
Organizations | Location | People |
---|
document
Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlation
Abstract
ABSTRACT Ceramic materials are being more and more used in bi-layer shielding solutions. When impacted, substantial tensile damage creates within the ceramic tile that manifests as numerous oriented cracks. Understanding the dynamic fracture response under high strain-rates and at the level of a single dynamic crack is of major importance in pushing forward the design of resilient ceramic-based armour solutions. For that purpose, a testing technique called the Rocking-spalling test, using a single Hopkinson bar, is used in this work. This experimental method enables the study of a single quasi-straight dynamic crack which propagates through a double-notched rectangular specimen. A projectile impacts the bar generating a compressive pulse that propagates to the specimen and reflects from its free-end. Upon reflection into a tensile wave, a rocking effect takes place, thanks to the notch positioning, which leads to the inception of a single crack that propagates from the notch tip. The entire crack propagation process is filmed with an ultra-high-speed camera with exposure times down to 200 ns. Digital image correlation (DIC) was used to extract meaningful kinematics at the sample surface. Two post-processing methods for determination of crack velocity in a porous silicon carbide ceramic (Forceram®) are presented.