People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michel, Alexander
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2023Hybrid fatigue crack propagation analysis using damage and fracture mechanics methods
- 2023Cementitious materials for oil-well abandonment and numerical simulations of cement durability at oil well conditions
- 2022A multi-species reactive transport model based on ion-solid phase interaction for saturated cement-based materialscitations
- 2022Corrosion Fatigue
- 2022Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosion:a critical review by RILEM TC 262-SCIcitations
- 2022Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosion: a critical review by RILEM TC 262-SCIcitations
- 2022Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosioncitations
- 2020Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide – Multiscale deterioration phenomenacitations
- 2019The influence of concrete maturity on the pull-out behaviour of steel fibres at early-ages
- 2019Coupled mass transport, chemical, and mechanical modelling in cementitious materials: A dual-lattice approach
- 2019Coupled mass transport, chemical, and mechanical modelling in cementitious materials: A dual-lattice approach
- 2018Moisture ingress in cracked cementitious materialscitations
- 2018A framework for modelling corrosion-related degradation in reinforced concrete
- 2017Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress
- 2017Coupled hygrothermal, electrochemical, and mechanical modelling for deterioration prediction in reinforced cementitious materials
- 2017Corrosion resistance of steel fibre reinforced concrete - A literature reviewcitations
- 2016Probabilistic Design and Management of Sustainable Concrete Infrastructure Using Multi-Physics Service Life Models
- 2016Multi-physical and multi-scale deterioration modelling of re-inforced concrete: modelling corrosion-induced concrete damage
- 2016Propagation of steel corrosion in concrete: Experimental and numerical investigationscitations
- 2016Corrosion resistance of steel fibre reinforced concrete – a literature review
- 2015Multi-physical and multi-scale deterioration modelling of reinforced concrete part II: Coupling corrosion and damage at the structural scale
- 2015Multi-physics and multi-scale deterioration modelling of reinforced concrete part I: Coupling transport and corrosion at the material scale
- 2014Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materialscitations
- 2014Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulationscitations
- 2013Reinforcement Corrosion: Numerical Simulation and Service Life Prediction
- 2012Estimation of elastic modulus of reinforcement corrosion products using inverse analysis of digital image correlation measurements for input in corrosion-induced cracking model
- 2011Modeling moisture ingress through simplified concrete crack geometries
- 2011A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials
- 2011Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurementscitations
- 2011Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurementscitations
- 2009Modelling the influence of steel fibres on the electrical resistivity of cementitious composites
Places of action
Organizations | Location | People |
---|
document
Coupled mass transport, chemical, and mechanical modelling in cementitious materials: A dual-lattice approach
Abstract
Critical sets of civil infrastructure systems form the foundation for quality of life and enable global development and progress. Consuming vast amounts of material resources and energy, it is essential that global civil infrastructure is designed according to broad, long-term design goals for the benefit of our planet and the current and future generations of humans, animals, and plants that will call it home. In particular, deterioration of civil infrastructure together with increasing loads presents a major challenge to achieving these goals in many developed countries. In this paper a coupled mass transport, chemical, and mechanical modelling approach for the deterioration prediction in cementitious materials is outlined. Deterioration prediction is thereby based on coupled modelling of (i) mass transport, i.e. moisture and ionic transport, in porous media, (ii) thermodynamic modelling of phase equilibria in cementitious materials, and (iii) mechanical performance including corrosion- and load-induced damages. The presented dual-lattice approach is fully coupled, i.e. information, such as moisture content, phase assemblage, damage state, transport properties, etc., are constantly exchanged within the model.