Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Zheshen S.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Atomically controlled, self-limiting procedures for growth of aluminum oxide on SiC-on-Sicitations

Places of action

Chart of shared publication
Gomes-Silva, Ana
1 / 10 shared
Pedersen, Kjeld
1 / 10 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Gomes-Silva, Ana
  • Pedersen, Kjeld
OrganizationsLocationPeople

document

Atomically controlled, self-limiting procedures for growth of aluminum oxide on SiC-on-Si

  • Gomes-Silva, Ana
  • Pedersen, Kjeld
  • Li, Zheshen S.
Abstract

Electronic devices fabricated from SiC/Si epitaxial wafers will need surface passivation and insulating coatings. For solar cell applications – and in MOS systems – Al-oxide thin film coatings have some strong advocates, not the least due to the advances of the ALD process. <br/>We have grownSiC/Si, formed by a remote CH4 plasma interacting with Si surfaces in UHV. After growing the SiC/Si system (SiC thickness between 0.5 and 5 nm; polycrystalline) a self-limiting Si-oxide layer was grown on the surface, with a thickness of around 1 nm, at 7000C. On top of this layer we deposited approximately 1 nm of Al with a Knudsen atomic source (all steps in UHV) and then reacted it thermally (at 6000C) with the Si-oxide. We monitored all the process steps and the resulting structures of the layers and the interface using synchrotron radiation induced core level photoemission at ASTRID, Aarhus, Denmark. We found similar qualities with this procedure, as for Si, i.e. an atomically sharp interface between Al-oxide and SiC, and this reaction scheme offers self-limiting behavior both of the oxidation to create Si-oxide, and to the conversion into Al-oxide, which only needs a sufficient amount of Al to affect the total conversion of the Si-oxide, while excess Al will leave the system at sufficiently elevated temperatures. <br/> <br/>

Topics
  • surface
  • thin film
  • aluminum oxide
  • aluminium