People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigo, Peter John
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2009Optically controlled three-dimensional assembly of microfabricated building blocks
- 2009Optical microassembly platform for constructing reconfigurable microenvironment for biomedical studiescitations
- 2007Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulation
- 2004Dynamic array of dark optical trapscitations
Places of action
Organizations | Location | People |
---|
document
Optically controlled three-dimensional assembly of microfabricated building blocks
Abstract
We demonstrate a system for constructing reconfigurable microstructures using multiple, real-time configurable counterpropagating-beam traps. We optically assemble geometrically complementary microstructures with complex three-dimensional (3D) topologies produced by two-photon polymerization. This demonstrates utilization of controllable 3D optical traps for building hierarchical structures from microfabricated building blocks. Optical microassembly with translational and tip-tilt control in 3D achieved by dynamic multiple CB traps can potentially facilitate the construction of functional microdevices and may also lead to the future realization of optically actuated micromachines. Fabricating morphologically complex microstructures and then optically manipulating these archetypal building blocks can also be used to construct reconfigurable microenvironments that can aid in understanding cellular development processes.