Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adam, Clayton

  • Google
  • 13
  • 15
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2020The effect of vertebral body stapling on spine biomechanics and structure using a bovine model3citations
  • 2014Gravity-induced coronal plane joint moments in the adolescent scoliotic spinecitations
  • 2014Segmental torso masses in adolescent idiopathic scoliosis8citations
  • 2014The effect of repeated loading and freeze - thaw cycling on immature bovine thoracic motion segment stiffness8citations
  • 2014The effect of intervertebral staple insertion on bovine spine segment stiffnesscitations
  • 2014Intervertebral staple grading system with micro-CTcitations
  • 2013Segmental torso masses and gravity-induced coronal plane joint moments in adolescent idiopathic scoliosiscitations
  • 2013The effect of testing protocol on immature bovine thoracic spine segment stiffnesscitations
  • 2013Segmental torso masses and coronal plane joint torques in the adolescent scoliotic spinecitations
  • 2010Fusionless scoliosis correction using shape memory alloy staplescitations
  • 2009Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam4citations
  • 2006Development of a method to validate computer models of the spine for scoliosis correction surgery simulationcitations
  • 2002Finite element analysis of high strain rate superplastic forming (SPF) of Al–Ti alloys8citations

Places of action

Chart of shared publication
Labrom, Robert D.
5 / 6 shared
Askin, Geoffrey
9 / 10 shared
Sunni, Nabeel
5 / 5 shared
Askin, Geoffrey N.
1 / 1 shared
Pettet, Graeme J.
1 / 1 shared
Keenan, Bethany E.
1 / 2 shared
Pettet, Graeme
3 / 3 shared
Labrom, Robert
5 / 5 shared
Keenan, Bethany
3 / 5 shared
Verzin, Eugene J.
1 / 1 shared
Evans, John
1 / 2 shared
Tevelen, Greg
1 / 1 shared
Cunningham, Helen
1 / 1 shared
Yarlagadda, Prasad Kdv
1 / 50 shared
Gudimetla, Prasad V.
1 / 1 shared
Chart of publication period
2020
2014
2013
2010
2009
2006
2002

Co-Authors (by relevance)

  • Labrom, Robert D.
  • Askin, Geoffrey
  • Sunni, Nabeel
  • Askin, Geoffrey N.
  • Pettet, Graeme J.
  • Keenan, Bethany E.
  • Pettet, Graeme
  • Labrom, Robert
  • Keenan, Bethany
  • Verzin, Eugene J.
  • Evans, John
  • Tevelen, Greg
  • Cunningham, Helen
  • Yarlagadda, Prasad Kdv
  • Gudimetla, Prasad V.
OrganizationsLocationPeople

document

Segmental torso masses and coronal plane joint torques in the adolescent scoliotic spine

  • Pettet, Graeme
  • Adam, Clayton
  • Askin, Geoffrey
  • Labrom, Robert
  • Keenan, Bethany
Abstract

Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve.Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions.Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13.Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%.Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.

Topics
  • impedance spectroscopy
  • computed tomography scan