People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Viceconti, Marco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020In silico trial to test COVID-19 candidate vaccines: a case study with UISS platformcitations
- 2019Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS)citations
- 2012Accuracy of finite element predictions in sideways load configurations for the proximal human femur
Places of action
Organizations | Location | People |
---|
article
Accuracy of finite element predictions in sideways load configurations for the proximal human femur
Abstract
in Undetermined<br/>Subject-specific finite element models have been used to predict stress-state and fracture risk in individual patients. While many studies analysed quasi-axial loading configurations, only few works simulated sideways load configurations, such as those arising in a fall. The majority among these latter directly predicted bone strength, without assessing elastic strain prediction accuracy. The aim of the present work was to evaluate if a subject-specific finite element modelling technique from CT data that accurately predicted strains in quasi-axial loading configurations is suitable to accurately predict strains also when applying low magnitude loads in sideways configurations. To this aim, a combined numerical–experimental study was performed to compare finite element predicted strains with strain-gauge measurements from three cadaver proximal femurs instrumented with sixteen strain rosettes and tested non-destructively under twelve loading configurations, spanning a wide cone (0–30° for both adduction and internal rotation angles) of sideways fall scenarios. The results of the present study evidenced a satisfactory agreement between experimentally measured and predicted strains (R2 greater than 0.9, RMSE% lower than 10%) and displacements. The achieved strain prediction accuracy is comparable to those obtained in state of the art studies in quasi-axial loading configurations. Still, the presence of the highest strain prediction errors (around 30%) in the lateral neck aspect would deserve attention in future studies targeting bone failure.