People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Jorge Carvalho
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Preparation and Characterization of Zinc Ferrite and Gadolinium Iron Garnet Composite for Biomagnetic Applicationscitations
- 2024Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservationcitations
- 2024Bioactive Hydroxyapatite Aerogels with Piezoelectric Particlescitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2023Thermal, Structural, Morphological and Electrical Characterization of Cerium-Containing 45S5 for Metal Implant Coatingscitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications ; Fabrication, Structural, Electrical, and Biological Analysiscitations
- 2023Hydroxyapatite-Barium Titanate Biocoatings Using Room Temperature Coblastingcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applicationscitations
- 2022Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticlescitations
- 2019Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineeringcitations
- 2019Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineeringcitations
- 2019Polymer blending or fiber blending: a comparative study using chitosan and poly(ε-caprolactone) electrospun fiberscitations
- 2018Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineeringcitations
- 2017Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineeringcitations
- 2017Hybrid polysaccharide-based systems for biomedical applicationscitations
- 2016Natural Nanofibres for Composite Applicationscitations
- 2016A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineeringcitations
- 2015Osteogenisis enhancement of hydroxyapatite based materials by electrical polarization
- 2014Electrical polarization of a chitosan-hydroxyapatite composite
Places of action
Organizations | Location | People |
---|
document
Osteogenisis enhancement of hydroxyapatite based materials by electrical polarization
Abstract
Natural hydroxyapatite (HA) is the main component of bone. HA and biphasic composites (HA and b−tricalcium phosphate) are in fact the most common bioceramics used for bone regeneration.Natural hydroxyapatite (HA) is the main component of bone. HA and biphasic composites (HA and b−tricalcium phosphate) are in fact the most common bioceramics used for bone regeneration. To confirm the effect of polarization, cell culture assays were made using human osteoblasts (responsible for bone growth). Both non-polarized and polarized control samples were used. After 2 weeks, dried samples were gold coated and then cell morphology was evaluated by SEM. Iit is possible to observe osteoblasts deposited on HA surfaces. Polarized samples showed more osteoblasts and higher deposition of calcium phosphates.