Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shyam, Priyank

  • Google
  • 9
  • 29
  • 41

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Study2citations
  • 2024Aligned Permanent Magnet Made in Seconds:An In Situ Diffraction Study2citations
  • 2023High-Performance Hexaferrite Ceramic Magnets Made from Nanoplatelets of Ferrihydrite by High-Temperature Calcination for Permanent Magnet Applications8citations
  • 2023Sintering in seconds, elucidated by millisecond in situ diffraction3citations
  • 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnets9citations
  • 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnetscitations
  • 2019Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scatteringcitations
  • 2018Nanoscale LuFeO 3 : Shape dependent ortho/hexa-phase constitution and nanogenerator application17citations
  • 2018X-ray and neutron diffraction magnetostructural investigations on exchange-coupled nanocomposite magnetscitations

Places of action

Chart of shared publication
Gjørup, Frederik Holm
4 / 17 shared
Mørch, Mathias I.
5 / 10 shared
Christensen, Mogens
8 / 53 shared
Vijayan, Harikrishnan
3 / 3 shared
Jørgensen, Mads Ry Vogel
2 / 24 shared
Laursen, Amalie P.
4 / 4 shared
Frandsen, Jens Plum
1 / 1 shared
Gjørup, Frederik H.
1 / 3 shared
Frandsen, Jens P.
1 / 1 shared
Jørgensen, Mads R. V.
1 / 6 shared
Stingaciu, Marian
2 / 8 shared
Simonsen, Jesper
1 / 1 shared
Kantor, Innokenty
1 / 19 shared
Eikeland, Anna Z.
1 / 2 shared
Mamakhel, Aref
1 / 21 shared
Saura-Múzquiz, Matilde
3 / 15 shared
Eikeland, Anna Zink
2 / 3 shared
Ahlburg, Jakob Voldum
3 / 21 shared
Pillai, Harikrishnan Vijayan
1 / 2 shared
Kessler, Tommy Ole
1 / 4 shared
Povlsen, Amalie
1 / 3 shared
Knudsen, Cecilie Grønvaldt
1 / 2 shared
Shirolkar, Mandar M.
1 / 3 shared
Ogale, Satishchandra
1 / 11 shared
Chaturvedi, Smita
1 / 2 shared
Boomishankar, R.
1 / 1 shared
Singh, Sachin Kumar
1 / 2 shared
Krishna, Swathi
1 / 1 shared
Eikeland, Anna
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2019
2018

Co-Authors (by relevance)

  • Gjørup, Frederik Holm
  • Mørch, Mathias I.
  • Christensen, Mogens
  • Vijayan, Harikrishnan
  • Jørgensen, Mads Ry Vogel
  • Laursen, Amalie P.
  • Frandsen, Jens Plum
  • Gjørup, Frederik H.
  • Frandsen, Jens P.
  • Jørgensen, Mads R. V.
  • Stingaciu, Marian
  • Simonsen, Jesper
  • Kantor, Innokenty
  • Eikeland, Anna Z.
  • Mamakhel, Aref
  • Saura-Múzquiz, Matilde
  • Eikeland, Anna Zink
  • Ahlburg, Jakob Voldum
  • Pillai, Harikrishnan Vijayan
  • Kessler, Tommy Ole
  • Povlsen, Amalie
  • Knudsen, Cecilie Grønvaldt
  • Shirolkar, Mandar M.
  • Ogale, Satishchandra
  • Chaturvedi, Smita
  • Boomishankar, R.
  • Singh, Sachin Kumar
  • Krishna, Swathi
  • Eikeland, Anna
OrganizationsLocationPeople

document

Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scattering

  • Saura-Múzquiz, Matilde
  • Christensen, Mogens
  • Shyam, Priyank
  • Eikeland, Anna Zink
  • Ahlburg, Jakob Voldum
Abstract

<p class="MsoNoSpacing" style="text-align:justify">An ideal permanent magnet should be highly resistant to demagnetization (high coercivity <i>H</i><sub>C</sub>) and have a high value of maximum internal magnetization (high saturation magnetization <i>M</i><sub>S</sub>). In the real world, a single-phase magnet might not simultaneously possess high values of these magnetic properties. It is usually observed that rare-earth-free permanent magnets have either high <i>H</i><sub>C</sub>with low <i>M</i><sub>S</sub> (‘hard’ magnet– hard to demagnetize) or, low <i>H</i><sub>C</sub>with high <i>M</i><sub>S</sub> (‘soft’ magnet). The hexaferrite compound SrFe<sub>12</sub>O<sub>19</sub> has relatively high <i>H</i><sub>C</sub> (due to pronounced magnetocrystalline anisotropy) – making it a ‘hard magnetic’ phase, but a higher <i>M</i><sub>S</sub> value would be highly appreciated.<sup>[1]</sup> Spinel ferrites (AB<sub>2</sub>O<sub>4</sub>type) on the other hand, are ‘soft magnetic’ phases <i>i.e. </i>low <i>H</i><sub>C</sub>, but potentially strongly magnetic. Enhancement of <i>H</i><sub>C</sub> and <i>M</i><sub>S</sub>values simultaneously could be achieved by the mixing of two different nanomagnetic phases (hard-soft composite) – known as an exchange-spring nanocomposite.<sup>[2,3]</sup> The resultant magnetic properties of such composites would be hierarchically emergent – arising from the underlying atomic structure, via the nanoscale morphology of the individual particles, to the microscopic structural coupling of the different phases. While various studies have focused on the synthesis of exchange-spring magnets and their magnetic characterizations, detailed structural investigations are limited.<sup>[3–5]</sup> We report a comparative investigation on exchange-spring nanocomposites of SrFe<sub>12</sub>O<sub>19</sub>(SFO – hard magnet) and Zn<sub>0.2</sub>Co<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub>(ZCFO – soft magnet) prepared by two different synthesis routes: mechanical powder mixing and sol-gel coating. <i>M</i>-<i>H</i> loops from VSM magnetometry showed a dependence of the exchange-coupling behavior on the technique used for nanocomposite formation. Crystallographic and magnetic structure of the samples were analyzed by combined Rietveld refinement of data from synchrotron X-ray diffraction (SR-XRD performed at MS X04SA beamline @ SLS) &amp; thermal neutron powder diffraction (NPD performed using HRPT diffractometer at SINQ spallation source @ PSI). The difference in the scattering interaction for X-rays and neutrons allowed for complementary, robust &amp; accurate structural analysis.<sup>[5,6]</sup> Combined Rietveldrefinement of SR-XRD and NPD data of the nanocomposites enabled extraction of accurate values for lattice parameters, atomic positions, thermal motion, cation distribution, magnetic moments and microstructure. A detailed understanding of these correlated magnetostructural properties would be instrumental towards improving the performance of permanent magnets based on exchange-spring nanocomposites.</p><p class="MsoNoSpacing" style="text-align:justify"><br/></p><p class="MsoNoSpacing" style="text-align:justify">References:</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[1]       R. C. Pullar, <i>Prog.</i><i>Mater.Sci.</i> <b>2012</b>,<i>57</i>, 1191.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[2]       E.F. Kneller, R. Hawig, <i>IEEE Trans. Magn.</i> <b>1991</b>, <i>27</i>, 3588.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[3]       F. Liu, Y.Hou, S. Gao, <i>Chem. Soc. Rev.</i> <b>2014</b>, <i>43</i>, 8098.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[4]       S. Hirosawa, <i>J.Magn. Soc. Japan</i> <b>2015</b>, <i>39</i>, 85.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[5]       S. M. Yusuf,A. Kumar, <i>Appl. Phys. Rev.</i> <b>2017</b>, <i>4</i>, 031303.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[6]       E. Solano, C.Frontera, T. Puig, X. Obradors, S. Ricart, J. Ros, <i>J. Appl. Crystallogr.</i><b>2014</b>, <i>47</i>, 414.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • compound
  • phase
  • extraction
  • mass spectrometry
  • magnetization
  • saturation magnetization
  • coercivity
  • neutron scattering
  • static light scattering
  • synchrotron radiation X-ray diffraction