People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shyam, Priyank
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024Aligned Permanent Magnet Made in Seconds:An In Situ Diffraction Studycitations
- 2023High-Performance Hexaferrite Ceramic Magnets Made from Nanoplatelets of Ferrihydrite by High-Temperature Calcination for Permanent Magnet Applicationscitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2019Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scattering
- 2018Nanoscale LuFeO 3 : Shape dependent ortho/hexa-phase constitution and nanogenerator applicationcitations
- 2018X-ray and neutron diffraction magnetostructural investigations on exchange-coupled nanocomposite magnets
Places of action
Organizations | Location | People |
---|
document
Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scattering
Abstract
<p class="MsoNoSpacing" style="text-align:justify">An ideal permanent magnet should be highly resistant to demagnetization (high coercivity <i>H</i><sub>C</sub>) and have a high value of maximum internal magnetization (high saturation magnetization <i>M</i><sub>S</sub>). In the real world, a single-phase magnet might not simultaneously possess high values of these magnetic properties. It is usually observed that rare-earth-free permanent magnets have either high <i>H</i><sub>C</sub>with low <i>M</i><sub>S</sub> (‘hard’ magnet– hard to demagnetize) or, low <i>H</i><sub>C</sub>with high <i>M</i><sub>S</sub> (‘soft’ magnet). The hexaferrite compound SrFe<sub>12</sub>O<sub>19</sub> has relatively high <i>H</i><sub>C</sub> (due to pronounced magnetocrystalline anisotropy) – making it a ‘hard magnetic’ phase, but a higher <i>M</i><sub>S</sub> value would be highly appreciated.<sup>[1]</sup> Spinel ferrites (AB<sub>2</sub>O<sub>4</sub>type) on the other hand, are ‘soft magnetic’ phases <i>i.e. </i>low <i>H</i><sub>C</sub>, but potentially strongly magnetic. Enhancement of <i>H</i><sub>C</sub> and <i>M</i><sub>S</sub>values simultaneously could be achieved by the mixing of two different nanomagnetic phases (hard-soft composite) – known as an exchange-spring nanocomposite.<sup>[2,3]</sup> The resultant magnetic properties of such composites would be hierarchically emergent – arising from the underlying atomic structure, via the nanoscale morphology of the individual particles, to the microscopic structural coupling of the different phases. While various studies have focused on the synthesis of exchange-spring magnets and their magnetic characterizations, detailed structural investigations are limited.<sup>[3–5]</sup> We report a comparative investigation on exchange-spring nanocomposites of SrFe<sub>12</sub>O<sub>19</sub>(SFO – hard magnet) and Zn<sub>0.2</sub>Co<sub>0.8</sub>Fe<sub>2</sub>O<sub>4</sub>(ZCFO – soft magnet) prepared by two different synthesis routes: mechanical powder mixing and sol-gel coating. <i>M</i>-<i>H</i> loops from VSM magnetometry showed a dependence of the exchange-coupling behavior on the technique used for nanocomposite formation. Crystallographic and magnetic structure of the samples were analyzed by combined Rietveld refinement of data from synchrotron X-ray diffraction (SR-XRD performed at MS X04SA beamline @ SLS) & thermal neutron powder diffraction (NPD performed using HRPT diffractometer at SINQ spallation source @ PSI). The difference in the scattering interaction for X-rays and neutrons allowed for complementary, robust & accurate structural analysis.<sup>[5,6]</sup> Combined Rietveldrefinement of SR-XRD and NPD data of the nanocomposites enabled extraction of accurate values for lattice parameters, atomic positions, thermal motion, cation distribution, magnetic moments and microstructure. A detailed understanding of these correlated magnetostructural properties would be instrumental towards improving the performance of permanent magnets based on exchange-spring nanocomposites.</p><p class="MsoNoSpacing" style="text-align:justify"><br/></p><p class="MsoNoSpacing" style="text-align:justify">References:</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[1] R. C. Pullar, <i>Prog.</i><i>Mater.Sci.</i> <b>2012</b>,<i>57</i>, 1191.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[2] E.F. Kneller, R. Hawig, <i>IEEE Trans. Magn.</i> <b>1991</b>, <i>27</i>, 3588.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[3] F. Liu, Y.Hou, S. Gao, <i>Chem. Soc. Rev.</i> <b>2014</b>, <i>43</i>, 8098.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[4] S. Hirosawa, <i>J.Magn. Soc. Japan</i> <b>2015</b>, <i>39</i>, 85.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[5] S. M. Yusuf,A. Kumar, <i>Appl. Phys. Rev.</i> <b>2017</b>, <i>4</i>, 031303.</p><p class="MsoNormal" style="margin-left:32.0pt;text-indent:-32.0pt;mso-pagination:none;mso-layout-grid-align:none;text-autospace:none">[6] E. Solano, C.Frontera, T. Puig, X. Obradors, S. Ricart, J. Ros, <i>J. Appl. Crystallogr.</i><b>2014</b>, <i>47</i>, 414.</p>