People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Menke, Henri
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Stabilizing Even-Parity Chiral Superconductivity in Sr$_2$RuO$_4$
Abstract
Strontium ruthenate (Sr$_2$RuO$_4$) has long been thought to host a spin-triplet chiral $p$-wave superconducting state. However, the singlet-like response observed in recent spin-susceptibility measurements casts serious doubts on this pairing state. Together with the evidence for broken time-reversal symmetry and a jump in the shear modulus $c_{66}$ at the superconducting transition temperature, the available experiments point towards an even-parity chiral superconductor with $k_z(k_x ik_y)$-like $E_g$ symmetry, which has consistently been dismissed based on the quasi-two-dimensional electronic structure of Sr$_2$RuO$_4$. Here, we show how the orbital degree of freedom can encode the two-component nature of the $E_g$ order parameter, allowing for an $s$-wave orbital-antisymmetric spin-triplet state that can be stabilized by on-site Hund's coupling. We find that this exotic $E_g$ state can be energetically stable once a complete, realistic three-dimensional model is considered, within which momentum-dependent spin-orbit coupling terms are key. This state naturally gives rise to Bogoliubov Fermi surfaces....