Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kutz, Philipp Werner

  • Google
  • 3
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Testing of Composite Material for Transport Tanks for LNGcitations
  • 2018Development of a single walled tank under cryogenic conditions made of compositecitations
  • 2018Development of a Single Walled Tank under Cryogenic Conditions made of Compositecitations

Places of action

Chart of shared publication
Werner, Jan
2 / 2 shared
Otremba, Frank
2 / 6 shared
Sklorz, Christian
1 / 4 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Werner, Jan
  • Otremba, Frank
  • Sklorz, Christian
OrganizationsLocationPeople

document

Development of a single walled tank under cryogenic conditions made of composite

  • Kutz, Philipp Werner
Abstract

To reduce the emission of CO2, liquified natural gas (LNG) is used as fuel. As the pipeline network is not developed all around the globe, LNG needs to be transported via ship or truck. Double-walled tanks made of steel with a vacuum insulation are currently used to keep LNG at cryogenic temperatures (-162 °C; 111 K). The double-walled construction makes the tanks heavy and expensive. Furthermore, there are some restriction to carry out in-service inspection using a double-wall design. Main topics: Lightweight design, superior thermal properties of GRP compared to steel Aim of this project is to develop a single-walled tank made of glass-fiber reinforced plastic (GRP) and an insulator, so that the tank pressure will not exceed 5 bar within a certain time, relative, as a result of the rising fluid temperature. First, the thermal and mechanical properties of GRP and the insulator at cryogenic temperatures must be determined. Liquid nitrogen (-196 °C; 77 K) is used for all experiments at cryogenic temperatures for safety reasons. Mechanical properties are analyzed by performing 3-point bending tests on cooled specimen. The tests show, that there are now significant changes on the mechanical properties of GRP, so that this material can be used in a cryogenic environment. To examine the thermal conductivity of GRP, a test rig is designed, in which one side of a GRP-laminate plate is cooled down while the other side is at room temperature at the beginning. Temperature is measured on both sides of the plate as well as inside the laminate. The temperature curves are then implemented in a ANSYS simulation to calculate thermal material properties. The experiments show, that the thermal conductivity of GRP is much lower than the one of steel, but still not low enough to design a single walled tank without an additional insulation. Therefore, a closed GRP pipe with insolation inside is immersed in liquid nitrogen for a defined time. Sensors record the surface temperatures inside and outside the specimen, as well as between insulation and GRP. With the data gained in this experiment, another ANSYS model is done. For correct simulation of the heat transfer between insulation and liquid nitrogen (or LNG later), a fluid simulation is necessary, which simulates the phase change from liquid to gaseous nitrogen. After validation of the model, a parameter study in the material properties of the insulation is performed, until a satisfying setup is achieved.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • experiment
  • simulation
  • glass
  • glass
  • Nitrogen
  • steel
  • composite
  • bending flexural test
  • thermal conductivity