People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weinreich, Wenke
Fraunhofer Institute for Photonic Microsystems
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applicationscitations
- 2022Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applicationscitations
- 2021Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Filmscitations
- 2019Ferroelectric and pyroelectric properties of polycrystalline La-doped HfO2 thin filmscitations
- 2019Depth spectroscopy analysis of La-doped HfO2 ALD thin films in 3D structures by HAXPES and ToF-SIMS
- 2019Depth spectroscopy analysis of La-doped HfO2 ALD thin films in 3D structures by HAXPES and ToF-SIMS
- 2019ToF-SIMS 3d analysis of thin films deposited in high aspect ratio structures via atomic layer deposition and chemical vapor depositioncitations
- 2013Surface self-organization and structure of highly doped n-InGaAs ultra-shallow junctions
- 2013TEMAZ/O-3 atomic layer deposition process with doubled growth rate and optimized interface properties in metal-insulator-metal capacitorscitations
- 2011Macroscopic and microscopic electrical characterizations of high-k ZrO 2 and ZrO2/Al2O3/ZrO2 metal-insulator-metal structurescitations
Places of action
Organizations | Location | People |
---|
document
Depth spectroscopy analysis of La-doped HfO2 ALD thin films in 3D structures by HAXPES and ToF-SIMS
Abstract
Doped-HfO2 based ferroelectrics have been widely studied for the application in advanced CMOS technologies such as ferroelectric random-access memory (FeRAM) or ferroelectric field effect transistor (FeFET). Studies show that there is a strong link between the ferroelectric properties with the highest remanent polarization value of the doped-HfO2 and the structural properties of the film. In ultrathin ferroelectric films, the concentration of La dopant directly affects the stabilization of the polar orthorhombic phase (Pca2I) which impact spontaneous polarization of ferroelectric films[1]. In this research, we characterized La concentration in HfO2 on 3D structures to show the uniformity of dopant distribution inside the hafnia from top to bottom of a high aspect ratio (HAR) structure. We use atomic layer deposition (ALD) for excellent step coverage in HAR structures. ALD provides precise controlling of the dopant distribution within a layer. However, regulating the dopant concentration in a thin film requires a platform which could be easily characterized and measured.<br/> <br/>In this study, we used lateral high aspect ratio (LHAR) test structures (PillarHall™ developed at VTT [2-3]) as a new platform to perform precise measurements of hafnia doped thin film along the deposition gap in LHAR structure. On this purpose, we combined time-of-flight secondary ion mass spectrometry (ToF-SIMS) with X-ray photoelectron spectroscopy (XPS) and highly novel hard-XPS (HAXPES) to make a comparative study on deposited La-doped HfO2 thin films with ALD. We compare La stoichiometry in planar structures with LHAR structures. By then with ToF-SIMS capability of data imaging and integrating data points from the region of interest, doping profiles can be quantified together with understanding the trench wall in-depth penetration. Furthermore, we compared generated quantitative information from depth analysis of different La concentrations in LHAR structures with the help of both traditional XPS measurements using an Al Kα X-ray source and extended depth of analysis experiments using a Cr Kα (hard) X-ray source (the Cr X-ray source provides depths analysis about 3 times higher than standard Al Kα source).<br/>References<br/>[1] Mart et al., Appl. Phys. Lett., 114, no. 10, 2019.<br/>[2] Gao et al., Vac. Sci. Technol. A, 33, 2015.<br/>[3] Puurunen et al., AF-SuA15, ALD 2017.<br/>