Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghavami, Mohammad

  • Google
  • 3
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020An Experimentally Validated Smart Card UHF Tag Antenna ForFree Space and Near Body Scenarios1citations
  • 2017A Spatially Processed 3D Wideband Adaptive Conical Array Systemcitations
  • 2015UWB power propagation for bio-medical implanted devices1citations

Places of action

Chart of shared publication
Dudley-Mcevoy, Sandra
1 / 3 shared
Riaz, M.
1 / 3 shared
Ghafari, M.
1 / 6 shared
Brennan, P.
1 / 1 shared
Chart of publication period
2020
2017
2015

Co-Authors (by relevance)

  • Dudley-Mcevoy, Sandra
  • Riaz, M.
  • Ghafari, M.
  • Brennan, P.
OrganizationsLocationPeople

document

A Spatially Processed 3D Wideband Adaptive Conical Array System

  • Ghavami, Mohammad
Abstract

This paper presents a novel structure for an adaptive fully spatially processed wideband conical antenna array. A major advantage of this configuration is the frequency invariance of the directional patterns of the array within a relatively large fractional bandwidth which makes this array a potential candidate for wideband and ultra wideband (UWB) technology applications. Furthermore, unlike conventional wideband antenna arrays which use delay lines or time-domain filters, this system relies on fully spatial processing of the incoming or transmitted signals using a single real multiplier for each antenna element, without utilising any phase shifters, digital filters or adjustable delays. Finally, due to the conical shape of the array configuration, beamforming in both azimuth and elevation angles is accomplished with symmetrical and uniform characteristics in all azimuth directions.© 2017 IEEE.Personal use of this material is permitted.Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Topics
  • impedance spectroscopy
  • phase