Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bülow, Jon Fold Von

  • Google
  • 2
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formationcitations
  • 2013IN-SITU SYNCHROTRON PXRD STUDY OF SPINEL TYPE LiMn2O4 NANOCRYSTAL FORMATIONcitations

Places of action

Chart of shared publication
Bøjesen, Espen Drath
2 / 15 shared
Birgisson, Steinar
2 / 6 shared
Christensen, Mogens
2 / 53 shared
Jensen, Kirsten Marie Ørnsbjerg
2 / 6 shared
Tyrsted, Christoffer
2 / 5 shared
Christiansen, Troels Lindahl
2 / 5 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Bøjesen, Espen Drath
  • Birgisson, Steinar
  • Christensen, Mogens
  • Jensen, Kirsten Marie Ørnsbjerg
  • Tyrsted, Christoffer
  • Christiansen, Troels Lindahl
OrganizationsLocationPeople

document

In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formation

  • Bøjesen, Espen Drath
  • Birgisson, Steinar
  • Christensen, Mogens
  • Jensen, Kirsten Marie Ørnsbjerg
  • Bülow, Jon Fold Von
  • Tyrsted, Christoffer
  • Christiansen, Troels Lindahl
Abstract

Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4 nanoparticles are formed by reducing KMnO4 in an aqueous solution containing Li-ions. The reducing agent is an alcohol (here ethanol) and the reaction takes place under high pressure and temperature. The LiMn2O4 nanocrystals are unstable towards further reduction to Mn3O4 nanocrystals. Possible reaction route for this system is presented in equations (1) and (2).<br/>(1) 4LiOH + 8KMnO4 + 7CH3CH2OH --&gt; 4LiMn2O4 + 8KOH + 7CH3COOH + 5H2O<br/>(2) 12LiMn2O4 + 5CH3CH2OH + H2O --&gt; 8Mn3O4 + 12LiOH + 5CH3COOH<br/>Our group has developed an experimental technique for in-situ measurements of solvothermal reactions under sub- and supercritical conditions [Becker et al, J. Appl. Crystallogr. (2010) 43]. The technique uses synchrotron X-ray radiation to measure time resolved powder x-ray diffraction patterns while the reaction is happening thereby giving real time information on crystalline phase formation, particle sizes and other structural properties for the reaction being studied.<br/>In-situ measurements at different reaction temperatures have been conducted to see how the formation rate and particle growth is affected by temperature while the precursor concentration is kept constant. The precursor solution is an aqueous solution with Li:Mn:EtOH molar ratio of approximately 1:2:7 and the reactions conditions are constant temperature at 220°C, 260°C, 300°C, 350°C and 400°C at 250 bar.<br/>First results show the formation of the LiMn2O4 and Mn3O4 phases, the growth of the nanocrystals of each phase and evolution of structural properties (such as unit cell constants) as a function of reaction time. Further analysis will involve estimation of reaction rate constants and activation energies for each of the reactions for better understanding of the hydrothermal reaction system.<br/>

Topics
  • nanoparticle
  • impedance spectroscopy
  • crystalline phase
  • powder X-ray diffraction
  • activation
  • alcohol