Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Theunis, F.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Die Fracture Probability Prediction and Design Guidelines for Laminate-Based Over-Molded Packagescitations

Places of action

Chart of shared publication
Zhang, Guoqi
1 / 20 shared
Yang, D.
1 / 10 shared
Bielen, Ja
1 / 1 shared
Van Driel, Willem
1 / 20 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Zhang, Guoqi
  • Yang, D.
  • Bielen, Ja
  • Van Driel, Willem
OrganizationsLocationPeople

document

Die Fracture Probability Prediction and Design Guidelines for Laminate-Based Over-Molded Packages

  • Zhang, Guoqi
  • Yang, D.
  • Theunis, F.
  • Bielen, Ja
  • Van Driel, Willem
Abstract

Transferring molding process is widely used in the plastic IC packaging. Die cracking failures due to transfer molding process may occur. In this paper, an investigation on the die fracture and its failure probability is conducted. The approaches and results of die strength characterization, FE modeling on the laminate-based packages, and simulation-based prediction of the die fracture probability rate are presented. Weibull statistics model was used to describe the probability distribution. Model parameters were obtained by fitting to the test results. 3D parametric FE models were established to conduct numerical simulations to predict the stress field and die fracture probability caused during the tranfer molding process. For a BGA package, the influence of the solder mask opening under the die on the fracture probability was investigated. For the capped MEMS, high stress levels are induced in the cap and the MEMS die during the molding process. The cavity size, cap thickness, the molding pressure, and the wafer surface finishing process have significant influcences on the fracture failure probability. It shows that improvement of die fracture probability can be achieved by changing the designs of the die surface finishing process to meet the reliability requirements.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • simulation
  • strength
  • ion chromatography