Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yuan, Ca

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Modeling of the mechanical stiffness of the GaP/GaAs nanowires with point defects/stacking faultscitations

Places of action

Chart of shared publication
Bakkers, Epam
1 / 1 shared
Zhang, Guoqi
1 / 20 shared
Dawotola, Aw
1 / 1 shared
Van Driel, Willem
1 / 20 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Bakkers, Epam
  • Zhang, Guoqi
  • Dawotola, Aw
  • Van Driel, Willem
OrganizationsLocationPeople

document

Modeling of the mechanical stiffness of the GaP/GaAs nanowires with point defects/stacking faults

  • Bakkers, Epam
  • Zhang, Guoqi
  • Yuan, Ca
  • Dawotola, Aw
  • Van Driel, Willem
Abstract

The semiconductor type III-V nanowires (e.g., GaAs, GaP, InAs, InP, etc.) has excellent electronic/optical properties for the application of next-generation nano-scaled transistor, light-emitting diode and bio/chemical sensors. However, the electronic conductance of the nanowire is highly sensitive to the internal stress/strain condition under external loadings. In this paper, the mechanical stiffness of the GaAs and GaP nanowires are simulated, and the trend of the results are validated by the bulk experiments. The mechanical influence of the point defect and the stacking faults are considered. Moreover, an analytical solution is established to describe the mechanical stiffness decreasing of the stacking faults. The simulations indicate that the mechanical stiffness of the nanowire is influenced by the density of the stacking faults and the density of covalent bonds at the twin-dislocation interface.Key Words: III-V nano-scaled semiconductors, Molecular dynamics calculations, Stacking faults, Mechanical properties.

Topics
  • density
  • impedance spectroscopy
  • experiment
  • simulation
  • semiconductor
  • molecular dynamics
  • dislocation
  • stacking fault
  • point defect