Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Serdijn, Wouter A.

  • Google
  • 8
  • 21
  • 77

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces22citations
  • 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces22citations
  • 2020Long-term encapsulation of platinum metallization using a HfO2 ALD - PDMS bilayer for non-hermetic active implants18citations
  • 2019Effect of Signals on the Encapsulation Performance of Parylene Coated Platinum Tracks for Active Medical Implants15citations
  • 2019The influence of soft encapsulation materials on the wireless power transfer links efficiencycitations
  • 2019Energy efficient sampling and conversion of bio-signals using time-mode circuitscitations
  • 2019Towards an Active Graphene-PDMS Implantcitations
  • 2018MEMS-Electronics Integration 2: A Smart Temperature Sensor for an Organ-on-a-chip Platformcitations

Places of action

Chart of shared publication
Bakhshaee Babaroud, Nasim
1 / 1 shared
Weingärtner, Sebastian
2 / 2 shared
Palmar, Merlin
2 / 2 shared
Velea, Andrada Iulia
1 / 1 shared
Giagka, Vasiliki
7 / 20 shared
Vos, Frans M.
1 / 1 shared
Vollebregt, Sten
3 / 14 shared
Coletti, Chiara
2 / 3 shared
Babaroud, Nasim Bakhshaee
1 / 1 shared
Vos, Frans
1 / 1 shared
Velea, Andrada Lulia
1 / 1 shared
Ritasalo, Riina
1 / 7 shared
Nanbakhsh, Kambiz
2 / 3 shared
Bourgeois, Florian
1 / 3 shared
Dekker, Ronald
1 / 11 shared
Kluba, Marta
1 / 1 shared
Pahl, Barbara
1 / 4 shared
Malissovas, Anastasios
1 / 1 shared
Akgun, Omer Can
1 / 1 shared
Wardhana, Gandhika K.
1 / 1 shared
Ponte, Ronaldo
1 / 2 shared
Chart of publication period
2022
2020
2019
2018

Co-Authors (by relevance)

  • Bakhshaee Babaroud, Nasim
  • Weingärtner, Sebastian
  • Palmar, Merlin
  • Velea, Andrada Iulia
  • Giagka, Vasiliki
  • Vos, Frans M.
  • Vollebregt, Sten
  • Coletti, Chiara
  • Babaroud, Nasim Bakhshaee
  • Vos, Frans
  • Velea, Andrada Lulia
  • Ritasalo, Riina
  • Nanbakhsh, Kambiz
  • Bourgeois, Florian
  • Dekker, Ronald
  • Kluba, Marta
  • Pahl, Barbara
  • Malissovas, Anastasios
  • Akgun, Omer Can
  • Wardhana, Gandhika K.
  • Ponte, Ronaldo
OrganizationsLocationPeople

document

Energy efficient sampling and conversion of bio-signals using time-mode circuits

  • Serdijn, Wouter A.
  • Akgun, Omer Can
Abstract

With the continuous developments in science and engineering, specifically in the fields of electronics and manufacturing, implantable electronic devices have become a reality during the last decades. Implantable electronic devices have hard design constraints: 1) As small size as possible to reduce tissue damage, 2) Minimum heat generation to protect the surrounding tissue, and 3) Minimum energy dissipation as these devices are mostly operated using a small battery or wireless power transfer. The advancement and scaling of CMOS technologies has always been based on improving the performance of digital systems. With each new technology node, the threshold voltages of the available MOS transistors and the supply voltage of the process node is scaled as well. Scaling of the supply voltage reduces the headroom that is available to the transistors for operating in the region. Even though reducing the supply voltage reduces the energy dissipation, without transistors operating in the saturation region, it is very hard to realize signal processing and amplification functions in the analogue domain. To address the mentioned hard constraints of implantable electronic device design, we propose time-mode circuits for energy efficient sampling and conversion of bio-signals in advanced process technologies. The types of circuits we are proposing benefit both from voltage scaling and smaller size of advanced process nodes while being able to process digital signals with analogue accuracy, i.e., time-mode circuits represent an analogue signal by the time difference between two binary switching events. For example, when compared to standard digital CMOS circuit operation, to transfer N bits of data in parallel, the number of switchings required may change from 0 to N in standard CMOS, while it always takes timemode circuits two switching if the rising and falling edges of a pulse is used for signal representation. Based on these observations, we designed a bio-signal sampling and conversion system that consists of an analogue-to-time converter (ATC) followed by an asynchronous time-to-digital converter (A-TDC). The ATC converts the sampled bio-signal to a time-pulse with a high analogue-to-time conversion gain, and the A-TDC resolves this generated pulse to a digital value, completing the sampling and conversion process. We will present the design process and simulation results of such an implementation that operates with a supply voltage of 0.6V in a standard 0.18um process.

Topics
  • impedance spectroscopy
  • simulation