People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heath, Andrew
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2023Insights into the piezoceramic electromechanical impedance response for monitoring cement mortars during water saturation curingcitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites:Healing evaluation of early and later-age crackscitations
- 2022Effect of fibre loading on the microstructural, electrical, and mechanical properties of carbon fibre incorporated smart cement-based compositescitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious compositescitations
- 2020Compressive Strength of Novel Alkali-Activated Stabilized Earth Materials Incorporating Solid Wastescitations
- 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
- 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
- 2018Chemical aspects related to using recycled geopolymers as aggregatescitations
- 2017Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formationcitations
- 2016Investigation of the Recycling of Geopolymer Cement wastes as Fine Aggregates in Mortar Mixes
- 2016Chemical aspects related to using recycled geopolymers as an aggregate
- 2016Recycling of fly ash-slag Geopolymer binder in mortar mixes
- 2015The environmental credentials of hydraulic lime-pozzolan concretescitations
- 2015Structural and durability properties of hydraulic lime-pozzolan concretescitations
- 2015The environmental credentials of lime-pozzolan concretescitations
- 2014Numerical analysis of triplet shear test on brickwork masonrycitations
- 2013Laboratory scale testing of extruded earth masonry unitscitations
- 2013The potential for using geopolymer concrete in the UKcitations
- 2012The feasibility and potential of modern hydraulic lime concretes
- 2012Drystone retaining walls: ductile engineering structures with tensile strengthcitations
- 2009The compressive strength of modern earth masonry
- 2009The compressive strength of modern earth masonry
- 2009Compressive strength of extruded unfired clay masonry unitscitations
- 2001Quantifying Longitudinal, Corner and Transverse Cracking in Jointed Concrete Pavements
- 2000Top-down cracking of rigid pavements constructed with fast-setting hydraulic cement concrete
Places of action
Organizations | Location | People |
---|
document
Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
Abstract
Numerous studies have shown that production of geopolymer cement concretes can have lower carbon emissions compared to Portland cement concretes. However, for a full lifecycle assessment of environmental impacts, scenarios for the end of structures’ design life of must be considered, including reuse options. The work presented here is part of a wider study investigating the recyclability of fly ash-slag geopolymer cement (GC) concrete as an aggregate in Portland cement (PC) concretes. <br/>Three types of GC concretes with varying Na2O % per mass of precursor and SiO2/Na2O molar ratio were produced in the laboratory. All other mix design parameters were kept constant. The concretes were investigated thoroughly through physical and mechanical testing and chemical characterization at various ages and then crushed mechanically to form recycled geopolymer concrete aggregates (RGCA). <br/>Two series of PC concretes with 20% aggregate replacement by RGCA were produced – one of S1 consistence class and one of S3 consistence class (design slumps of 10-40mm and 100-150mm). The effect of RGCA on PC concrete fresh properties was investigated. The compressive strength development was assessed by testing at 7, 28 and 90 days. All results were evaluated against concretes with recycled Portland cement concrete aggregates (RCA) and natural limestone aggregates. These results were paired with calorimetric studies of pastes produced with recycled concrete aggregate leachate. <br/>Although mix designs were adapted according to water absorption requirements, the consistence of concretes appeared to be largely dependent on the type of aggregate. The results showed that strength trends remained unaltered between the two concrete series and were mostly influenced by the aggregate type. Mixes with RGCA presented overall higher strengths than the RCA and limestone aggregate concretes. Tests at 90 days showed a continuous increase of compressive strength, while the trends between the concretes remained unaltered. Overall, this study has shown that RGCA affect new concretes in a different way to RCA. However, none of the factors investigated here should prevent the use of RGCA in new concretes.<br/>