Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hubig, Claudius

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Density-matrix embedding theory study of the one-dimensional Hubbard-Holstein modelcitations

Places of action

Chart of shared publication
Reinhard, Teresa E.
1 / 1 shared
Sentef, Michael A.
1 / 4 shared
Rubio, Angel
1 / 20 shared
Schollwöck, Ulrich
1 / 3 shared
Appel, Heiko
1 / 1 shared
Kretchmer, Joshua S.
1 / 2 shared
Mordovina, Uliana
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Reinhard, Teresa E.
  • Sentef, Michael A.
  • Rubio, Angel
  • Schollwöck, Ulrich
  • Appel, Heiko
  • Kretchmer, Joshua S.
  • Mordovina, Uliana
OrganizationsLocationPeople

document

Density-matrix embedding theory study of the one-dimensional Hubbard-Holstein model

  • Reinhard, Teresa E.
  • Sentef, Michael A.
  • Rubio, Angel
  • Schollwöck, Ulrich
  • Appel, Heiko
  • Kretchmer, Joshua S.
  • Hubig, Claudius
  • Mordovina, Uliana
Abstract

We present a density-matrix embedding theory (DMET) study of the one-dimensional Hubbard-Holstein model, which is paradigmatic for the interplay of electron-electron and electron-phonon interactions. Analyzing the single-particle excitation gap, we find a direct Peierls insulator to Mott insulator phase transition in the adiabatic regime of slow phonons in contrast to a rather large intervening metallic phase in the anti-adiabatic regime of fast phonons. We benchmark the DMET results for both on-site energies and excitation gaps against density-matrix renormalization group (DMRG) results and find excellent agreement of the resulting phase boundaries. We also compare the fully quantum treatment of phonons against the standard Born-Oppenheimer (BO) approximation. The BO approximation gives qualitatively similar results to DMET in the adiabatic regime, but fails entirely in the anti-adiabatic regime, where BO predicts a sharp direct transition from Mott to Peierls insulator, whereas DMET correctly shows a large intervening metallic phase. This highlights the importance of quantum fluctuations in the phononic degrees of freedom for metallicity in the one-dimensional Hubbard-Holstein model....

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • phase transition
  • one-dimensional