Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wallis, Christopher

  • Google
  • 4
  • 10
  • 138

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Investigations of Plasma Metal Deposition (PMD) of 6061 and 7075 Aluminum Alloys for Aerospace and Automotive Applications3citations
  • 2021Fabrication of 3D metal-ceramic (Al-AlN) architectures using laser-powder bed fusion process20citations
  • 2019Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion115citations
  • 2019Additive manufacturing of thermal management-relevant hybrid structurescitations

Places of action

Chart of shared publication
Easton, Mark
1 / 9 shared
Horr, Amir
1 / 3 shared
Neubauer, Erich
1 / 19 shared
Kitzmantel, Michael
1 / 16 shared
Huebsch, Wolfgang
1 / 1 shared
Ariza-Galván, Enrique
1 / 1 shared
Bielik, Martin
1 / 1 shared
Buchmayr, Bruno
2 / 5 shared
Bermejo, Raúl
1 / 38 shared
Supancic, Peter
1 / 2 shared
Chart of publication period
2023
2021
2019

Co-Authors (by relevance)

  • Easton, Mark
  • Horr, Amir
  • Neubauer, Erich
  • Kitzmantel, Michael
  • Huebsch, Wolfgang
  • Ariza-Galván, Enrique
  • Bielik, Martin
  • Buchmayr, Bruno
  • Bermejo, Raúl
  • Supancic, Peter
OrganizationsLocationPeople

thesis

Additive manufacturing of thermal management-relevant hybrid structures

  • Wallis, Christopher
Abstract

The potential of metal additive manufacturing for producing high conductive materials and hybrid systems for thermal management in opto-, power and microelectronics has been investigated. Using the laser-based powder-bed fusion technology (L-PBF), joining and bonding of metals and metal-ceramics have been studied with a focus on the fusion zone and the interlayer, respectively. In the course of this thesis the bonding characteristics of steel/copper and AlN/Al-alloy have been assessed. Owing to residual stress evolution during L-PBF, process-induced material damage such as cracking at the binding zone was investigated and compared to residual stress simulations by which a correlation between process parameters, part geometry and the material failure could be established.A further focus in this work was placed on additive manufacturing of the thermally high conductive Cu-alloy CuCrZr. The influence of process parameters on part properties and surface quality was determined. The heat dissipation properties of conventional and additively manufactured parts were assessed and compared. For this a use case study part with microchannels was produced, whose properties were assessed by thermographic inspection, following a computational fluid dynamics simulation.Furthermore it was demonstrated that L-PBF parts feature a unique thermal history during the layer-by-layer manufacturing process, which is why CuCrZr samples in as-built state are characterized by a microstructure in non-equilibrium. In this state subsequent aging heat treatments were performed to improve material properties. In contrast to conventional manufactured Cu-alloys, a single aging process on laser-fused CuCrZr with adjusted heat treatment parameters is capable of reaching enhanced mechanical as well as thermal properties. The influence of different heat treatments on microstructure and material properties has been investigated and assessed, using SEM- and XRD-analysis.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • simulation
  • steel
  • selective laser melting
  • copper
  • aging
  • ceramic
  • joining
  • aging