People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calabria-Holley, Juliana
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2021Investigation of the variability in the components of natural plant fibres subjected to hornification cycles
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Autogenous self-healing of fibre cements
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2019ICE Themes Low Carbon Concrete
- 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
- 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
- 2018Chemical aspects related to using recycled geopolymers as aggregatescitations
- 2018Modification of hemp shiv properties using water-repellent sol–gel coatingscitations
- 2018Modification of Hemp Shiv Properties using Water-repellent Sol-gel Coatingscitations
- 2016The effects of sol-gel silicates on hydration kinetics and microstructure of Portland cement systems
- 2015Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systemscitations
- 2015Effect of nanolimestone particles on hydration and flexural strength of Portland limestone cement pastes
- 2015Sol-Gel Technology as a Seeding Agent for Portland Cement Systems
- 2015A comprehensive review of the models on the nanostructure of calcium silicate hydratescitations
- 2014The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
- 2014Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Places of action
Organizations | Location | People |
---|
document
Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
Abstract
Despite extensive research of geopolymers, the potential of recycling after the end of service-life has barely been investigated. The present paper is part of a study investigating recycling of fly ash-slag geopolymer concrete as aggregate in Portland cement concrete mixes. Three types of geopolymer concretes with varying Na2O% and Na: Si ratio were recycled. Properties of concretes such as compressive strength and water absorption were tested. After curing for a period of three months, they were crushed to produce coarse recycled aggregate. The recycled aggregates were subjected to examination of physical properties such as density and water absorption.<br/>Concretes with 20% replacement of coarse natural by recycled aggregate were produced. The compressive strength and water absorption were tested at various ages. The results were evaluated against mixes with natural limestone and recycled Portland cement concrete produced in a similar manner. The results revealed that physical characteristics of recycled aggregates, such as sharpness and shape, affected workability and subsequently strength. Aggregate water absorption was taken into account at mix design, while it appeared to be directly related to concrete water absorption.The effect of geopolymer incorporation on strength seemed to be more dependent on the aggregate type and particularly on Na2O% of original concrete.Overall not significant decreases of strength were observed, while 90 days testing revealed a continuous strength development.<br/><br/><br/><br/>