Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Honeyands, Tom

  • Google
  • 2
  • 10
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Automated Optical Image Analysis of Iron Ore Sinter12citations
  • 2018A review of high-temperature experimental techniques used to investigate the cohesive zone of the ironmaking blast furnacecitations

Places of action

Chart of shared publication
Mali, Heinrich
1 / 2 shared
Pownceby, Mark
1 / 14 shared
Bueckner, Birgit
1 / 1 shared
Manuel, James
1 / 13 shared
Peterson, Mike
1 / 3 shared
Donskoi, Eugene
1 / 12 shared
Evans, Geoffrey
1 / 1 shared
Liu, Xinliang
1 / 1 shared
Odea, Damien
1 / 1 shared
Zulli, Paul
1 / 7 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Mali, Heinrich
  • Pownceby, Mark
  • Bueckner, Birgit
  • Manuel, James
  • Peterson, Mike
  • Donskoi, Eugene
  • Evans, Geoffrey
  • Liu, Xinliang
  • Odea, Damien
  • Zulli, Paul
OrganizationsLocationPeople

article

A review of high-temperature experimental techniques used to investigate the cohesive zone of the ironmaking blast furnace

  • Honeyands, Tom
  • Evans, Geoffrey
  • Liu, Xinliang
  • Odea, Damien
  • Zulli, Paul
Abstract

The softening and melting (S&M) under load test is widely used as a laboratory-scale routine test to investigate the behaviour of ferrous burden materials in the cohesive zone (CZ). However, it has been more than 30 years since the last comprehensive review and over that time, operational conditions in large, high-production blast furnaces (BFs) have changed substantially. This review provides a summary and critique of current laboratory methods and practices used to evaluate the behaviour of ferrous materials in the CZ, focussing on the various configurations and operating conditions employed for the S&M under load test. Moreover, the review proposes and argues for a more integrated approach to S&M analysis for research, one which promotes a more comprehensive understanding of ferrous burden behaviour in the CZ region and which, in turn, enables the development of more robust, routine tests for the purpose of material comparisons and prediction of BF performance.

Topics
  • impedance spectroscopy