People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maroto-Valer, Mercedes
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024From brew to clean fuelcitations
- 2022Production of CH4 and CO on CuxO and NixOy coatings through CO2 photoreductioncitations
- 2022Core-shell TiO2-x-CuyO microspheres for photogeneration of cyclic carbonates under simulated sunlightcitations
- 2021Laser-manufactured glass microfluidic devices with embedded sensors
- 2021Comparative study of CO2 photoreduction using different conformations of CuO photocatalystcitations
- 2021Maskless laser prototyping of glass microfluidic devices
- 2020The effect of the layer-interlayer chemistry of LDHs on developing high temperature carbon capture materialscitations
- 2019Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glasscitations
- 2019Understanding Reactive Flow in Porous Media for CO2 Storage Applications
- 2019Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impactscitations
- 2019Photo-generation of cyclic carbonates using hyper-branched Ru-TiO2citations
- 2018Laser-based fabrication of microfluidic devices for porous media applicationscitations
- 2018Rapid Laser Manufacturing of Microfluidic Devices from Glass Substratescitations
- 2017Fabrication of three-dimensional micro-structures in glass by picosecond laser micro-machining and welding
- 2017Coal-derived unburned carbons in fly ash: A reviewcitations
- 2015Evaluation of a Flue Gas Desulphurisation (FGD)-Gypsum from a Wet Limestone FGD as Adsorbent for Removal of Selenium in Water Streamscitations
- 2012Micro-silica for high-end application from carbon capture and storage by mineralisationcitations
- 2002Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agentscitations
Places of action
Organizations | Location | People |
---|
document
Understanding Reactive Flow in Porous Media for CO2 Storage Applications
Abstract
The injection of CO2 in geological formations, e.g., sandstone and carbonate formations, disrupts the equilibrium among the resident phases and causes geochemical changes [1]. Determining the safe storage of CO2 in aquifers significantly depends on understanding how fluid phases interact within the porous structure of rocks [2], including rock/fluid interactions at the macro and micro scale, resulting in dissolution or precipitation which may lead to either enhance or impede fluid flow. Sandstones are often chosen for CO2 storage, as they have suitable porosity and permeability [3]. Although there are studies on the role of fluid chemistry, the literature suffers from a deep understanding of the effect of different ionic strengths of brine on rock dissolution during CO2 geological storage. Therefore, the focus of this work is to investigate the reactivity of CO2 saturated brine with different ionic strengths in contact with sandstone at pressure and temperature conditions representative of storage sites.<br/>In this work, we use a systematic combination of different techniques, including hydrothermal tests, Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), X-ray diffractometer (XRD), Environmental Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (ESEM-EDS), and micro-computed tomography (Micro-CT) scanning to understand geochemical behaviour and address the extremely intricate phenomena of flow, transport and reactions occurring over various temporal and spatial scales in sandstone reservoir rocks.<br/>The synthetic brine used in this research work is representative of typical aquifer brine, consisting of NaCl, KCl, CaCl2 and MgCl2. Hydrothermal tests (130 bar and 60 °C) are conducted using a Berea sandstone sample with length and diameter of 3.8cm and 3.8cm, respectively. Mineralogical composition of the Berea sandstone, based on XRD analysis provided by the supplier, indicated that the main mineral present was quartz, with small concentrations of kaolinite and feldspars.<br/>-2-<br/>Micro-CT studies using Micro-CT (Nikon XT H 160) were conducted to evaluate porosity, pore size distribution and pore structure of the core sample before and after hydrothermal testing. Figure 1 presents the Micro-CT images and pore size distribution of (a) top section, (b) middle area, and (c) bottom slice of the unreacted Berea sandstone core sample.<br/>Figure 1. Micro-CT images and pore size distribution of Berea sandstone core plug pre-reaction in the batch reactor system; (a) top section, (b) middle area, and (c) bottom slice<br/>This paper will present a comprehensive characterisation of the test fluid and Berea sandstone core plug before and after the hydrothermal experiments. This will include detailed measurements of porosity, pore size distribution, morphology changes and cation concentration variations. The information gained from the combination of these unique tests, including CT measurements, will allow to build a better understanding of the dominant drivers of CO2 reactive transport in porous media during CO2 storage.<br/>Acknowledgements<br/>This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MILEPOST, Grant agreement no.: 695070). This paper reflects only the authors’ view and ERC is not responsible for any use that may be made of the information it contains.