People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Varveri, Aikaterini
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Bituminous Binder and Bituminous Mixture Modified with Waste Polyethylenecitations
- 2023Bituminous Binder and Bituminous Mixture Modified with Waste Polyethylenecitations
- 2023Bituminous Binder and Bituminous Mixture Modified with Waste Polyethylenecitations
- 2023Bituminous binder and bituminous mixture modified with waste polyethylenecitations
- 2021Exploring the oxidative mechanisms of bitumen after laboratory short- and long-term ageingcitations
- 2021Accelerated carbonation of ordinary Portland cement paste and its effects on microstructure and transport properties
- 2021Experimental Validation of the Dual-Oxidation Routes in Bituminous Binderscitations
- 2020Experimental investigation of the oxidative ageing mechanisms in bitumencitations
- 2019Effect of moisture on the adhesion of aggregate–binder systemscitations
- 2018Effects of different aging methods on chemical and rheological properties of bitumencitations
- 2017Moisture damage susceptibility of asphalt mixtures
- 2016Microstructural analysis of porous asphalt concrete mix subjected to rolling truck tire loadscitations
- 2016Durability of European Asphalt Mixtures Containing Reclaimed Asphalt and Warm-Mix Additives
Places of action
Organizations | Location | People |
---|
conferencepaper
Durability of European Asphalt Mixtures Containing Reclaimed Asphalt and Warm-Mix Additives
Abstract
This paper investigates the moisture susceptibility of European asphalt mixtures (SMA) containing reclaimed asphalt (RA) and warm mix (WMA) additives. Test sections of a typical SMA mixture have been laid, from which cylindrical samples were cored and utilized for laboratory testing. Four variants of the SMA mixture were prepared; a control HMA mixture with 0% RA, a mixture with 30% RA and no WMA additive, a mixture with 30% RA in which a WMA additive was added and a mixture with 40% RA and a WMA additive. The coring procedure and testing were carried out in two phases; first field cores were taken 24 hrs after the construction of the test section was completed and then once again 12 months later. In this way, the influence of field aging on the mechanical performance of the mixtures was considered. The samples were moisture conditioned at various combinations of water bath immersion and cyclic pore pressures by means of the Moisture Induced Sensitivity Tester (MiST). The degradation in strength due to moisture was quantified through indirect tensile strength tests. The results indicated that the use of RA in combination with WMA additives resulted to mixtures with improved durability characteristics, with respect to moisture damage, compared to the control HMA mixture. Based on the results, recommendations were made for characterizing and limiting moisture damage of asphalt pavements. ; harvest ; Pavement Engineering