People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Memon, Saim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cellscitations
- 2021Experimental Modal Analysis of Distinguishing Microstructural Variations in Carbon Steel SA516 by Applied Heat Treatments, Natural Frequencies, and Damping Coefficientscitations
- 2020Advanced Thermoelectric Materials for Energy Harvesting Applicationscitations
- 2020Dye removal with magnetic graphene nanocomposite through micro reactorscitations
- 2020Manifestations of carbon capture-storage and ambivalence ofquantum-dot & organic solar cells: An indispensable abridgedreview
- 2019Smart Vacuum Glazing invented with Energy-Efficient Fusion Seal for the Solar Thermal Transmittance Control in Buildings
- 2018Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvestingcitations
- 2015A new low-temperature hermetic composite edge seal for the fabrication of triple vacuum glazingcitations
- 2013Energy efficient vacuum glazed window: A system design and investigations on hermetic sealing materials
- 2013Design and fabrication of vacuum glazing units using a new low temperature hermetic glass edge sealing method
- 2012Design & Development of Triple Vacuum glazing: An Investigation on Cost Effective Hermetic Sealing Materials & Predictions of Heat Load in a Solid Wall Dwelling
Places of action
Organizations | Location | People |
---|
document
Energy efficient vacuum glazed window: A system design and investigations on hermetic sealing materials
Abstract
Predictions by Fang et al (2010) indicate that triple vacuum glazing can theoretically achieve a centre of pane thermal transmittance of less than 0.26 W/(m2.K). To date two materials indium and solder glass have been used for sealing the edges the glass sheets in a vacuum glazing. Indium is a low temperature sealing material (157C) but is very expensive. Solder glass is a high temperature sealing material (around 450 C). One of the main hindrance to the manufacture of vacuum glazing at the industrial level is the cost. In this poster presentation, a vacuum glazing system for production at a laboratory scale using a modified evacuation pump-out sealing technique is presented. A number of samples have been fabricated using existing and new sealing materials that achieve a vacuum pressure less than 0.001Pa in the cavity of the vacuum glazing samples. An experimental performance verification of samples using new cost effective sealing materials will be executed in a hot box calorimeter to measure thermal transmittance performance of the samples. Issues associated with degradation of the vacuum pressure inside the cavity can be addressed by introducing non-evaporable getters.