People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ullah, Zahur
Durham University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfaces
- 2024Experimental and numerical investigation of fracture characteristics in hybrid steel/composite and monolithic angle-ply laminates
- 2024Finite fracture mechanics fracture criterion for free edge delamination
- 2023A three-dimensional Finite Fracture Mechanics model for predicting free edge delamination
- 2023A computational framework for crack propagation along contact interfaces and surfaces under loadcitations
- 2023Three-dimensional semi-analytical investigation of interlaminar stresses in composite laminates
- 2023Maritime applications of fibre reinforced polymer composites
- 2023A semi-analytical method for measuring the strain energy release rates of elliptical cracks
- 2023Studies on the impact and compression-after-impact response of ‘Double-Double’ carbon-fibre reinforced composite laminates
- 2023Failure analysis of unidirectional composites under longitudinal compression considering defects
- 2023Exploring the elastic properties of woven fabric composites: a machine learning approach for improved analysis and designcitations
- 2021On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminatescitations
- 2020Hierarchical finite element-based multi-scale modelling of composite laminatescitations
- 2020Investigation of the free-edge stresses in composite laminates using three-dimensional hierarchic finite elements
- 2020A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminatescitations
- 2019A unified framework for the multi-scale computational homogenisation of 3D-textile compositescitations
- 2018Mortar Contact Formulation Using Smooth Active Set Strategy Applied to 3D Crack Propagation
- 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
- 2017Multi-scale Computational Homogenisation to Predict the Long-Term Durability of Composite Structures.citations
- 2016Multi-Scale Computational Homogenisation of the Fibre-Reinforced Polymer Composites Including Matrix Damage and Fibre-Matrix Decohesion
- 2015Hierarchical Finite Element Based Multiscale Computational Homogenisation of Coupled Hygro-Mechanical Analysis for Fibre-Reinforced Polymers
- 2015Multiscale computational homogenisation to predict the long-term durability of composite structures
- 2014Computational homogenisation of fibre reinforced composites
Places of action
Organizations | Location | People |
---|
document
Hierarchical Finite Element Based Multiscale Computational Homogenisation of Coupled Hygro-Mechanical Analysis for Fibre-Reinforced Polymers
Abstract
This paper presents a multiscale computational homogenisation of the coupled hygro-mechanical analysis of the fibre-reinforced polymers (FRPs). This is ongoing research work for the development of a computational framework to predict the long-term durability of these materials for use in the construction industry. Textile or woven composites, in which interlaced fibres are used as reinforcement, is a class of FRPs which provides full flexibility of design and functionality due to the mature textile manufacturing industry and is commonly used in many engineering applications, including ships, aircrafts, automobiles, civil structures and prosthetics [1]. During their service life textile composites are exposed to different hygrothermal environmental conditions in addition to mechanical loading, which leads to matrix plasticisation and degradation of fibres/matrix interfaces [2]. Therefore, understanding of moisture transport mechanisms and their effect on the mechanical performance of these materials are vital for predicting their long-term durability.<br/>The heterogeneous microstructure of textile composites requires a detailed multiscale computational homogenisation. The use of multiscale computational homogenisation results in the macroscopic constitutive behaviour of the structures based on its microscopically heterogeneous representative volume element (RVE). A plain weave textile composite RVE is considered in this case, consisting of matrix and yarns embedded in the matrix. These yarns are modeled with elliptical cross section and cubic spline paths. An automated parameterised RVE geometry along with material properties, boundary conditions and meshes are generated in CUBIT with Python scrip, which allows rapid generation of different types of composites. <br/>The multiscale computational homogenisation framework is implemented in our group’s FE software, MoFEM (Mesh Oriented Finite Element Method). A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between displacement, traction and periodic boundary conditions [3]. The effect of moisture concentration on Young’s modulus and moisture induced swelling are considered in the model. The final resultant nonlinear discretised system of equations is solved using the Newton–Raphson method. Matrix and yarns are considered as isotropic and transversely isotropic materials respectively. The required principal directions of the yarns for the transversely isotropic material model are calculated from a computationally inexpensive potential flow analysis along these yarns. Furthermore, the computational framework utilises the flexibility of hierarchic basis functions [2], which permits the use of arbitrary orders of approximation leading to very accurate results for relatively coarse meshes. Convergence studies based on hierarchical finite element analysis is also performed to show the effectiveness of the developed approach. The developed code is based on distributed memory parallel programming and is tested on high performance computer facilities. The implementation and performance of the developed computational tool are demonstrated with numerical examples.<br/><br/>REFERENCES<br/>[1] T. W. Chua. Multi–scale modeling of textile composites. Master’s thesis, Department of Mechanical Engineering, Technische Universiteit Eindhoven, January 2011.<br/><br/>[2] X. Tang, J. D. Whitcomb, Y. Li and H. –j. Sue. Micromechanics modeling of moisture diffusion in woven composites. Composites Science and Technology, 65(6), 817–826, 2005. <br/><br/>[3] Ł. Kaczmarczyk, C. J. Pearce, and N. Bićanić. Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. International Journal for Numerical Methods in Engineering, 74(3):506–522, 2008.<br/><br/>[4] M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstructured tetrahedral meshes. International Journal for Numerical Methods in Engineering, 58 (14): 2103–2130, 2003.<br/>