Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ullah, Zahur

  • Google
  • 23
  • 34
  • 96

Durham University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (23/23 displayed)

  • 2024Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfacescitations
  • 2024Experimental and numerical investigation of fracture characteristics in hybrid steel/composite and monolithic angle-ply laminatescitations
  • 2024Finite fracture mechanics fracture criterion for free edge delaminationcitations
  • 2023A three-dimensional Finite Fracture Mechanics model for predicting free edge delaminationcitations
  • 2023A computational framework for crack propagation along contact interfaces and surfaces under load2citations
  • 2023Three-dimensional semi-analytical investigation of interlaminar stresses in composite laminatescitations
  • 2023Maritime applications of fibre reinforced polymer compositescitations
  • 2023A semi-analytical method for measuring the strain energy release rates of elliptical crackscitations
  • 2023Studies on the impact and compression-after-impact response of ‘Double-Double’ carbon-fibre reinforced composite laminatescitations
  • 2023Failure analysis of unidirectional composites under longitudinal compression considering defectscitations
  • 2023Exploring the elastic properties of woven fabric composites: a machine learning approach for improved analysis and design1citations
  • 2021On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminates13citations
  • 2020Hierarchical finite element-based multi-scale modelling of composite laminates7citations
  • 2020Investigation of the free-edge stresses in composite laminates using three-dimensional hierarchic finite elementscitations
  • 2020A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminates6citations
  • 2019A unified framework for the multi-scale computational homogenisation of 3D-textile composites38citations
  • 2018Mortar Contact Formulation Using Smooth Active Set Strategy Applied to 3D Crack Propagationcitations
  • 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Compositescitations
  • 2017Multi-scale Computational Homogenisation to Predict the Long-Term Durability of Composite Structures.29citations
  • 2016Multi-Scale Computational Homogenisation of the Fibre-Reinforced Polymer Composites Including Matrix Damage and Fibre-Matrix Decohesioncitations
  • 2015Hierarchical Finite Element Based Multiscale Computational Homogenisation of Coupled Hygro-Mechanical Analysis for Fibre-Reinforced Polymerscitations
  • 2015Multiscale computational homogenisation to predict the long-term durability of composite structurescitations
  • 2014Computational homogenisation of fibre reinforced compositescitations

Places of action

Chart of shared publication
Burhan, Mohammad
7 / 9 shared
Mccreight, T.
1 / 1 shared
Sands, Caitlin
1 / 1 shared
Kazancı, Zafer
4 / 16 shared
Catalanotti, Giuseppe
5 / 29 shared
Scalici, Tommaso
2 / 8 shared
Falzon, Brian George
7 / 10 shared
Scalici, Tommasso
3 / 29 shared
Kaczmarczyk, Łukasz
1 / 2 shared
Athanasiadis, Ignatios
2 / 6 shared
Lewandowski, Karol
1 / 2 shared
Pearce, Chris J.
3 / 3 shared
Shvarts, Andrei G.
1 / 1 shared
Wan, Lei
2 / 2 shared
Millen, Scott
3 / 9 shared
Aravand, M. Ali
1 / 13 shared
Falzon, Brian
1 / 15 shared
Allegri, Giuliano
1 / 32 shared
Hayat, Khazar
1 / 1 shared
Ahmad, Zeshan
1 / 1 shared
Siddique, Shafaqat
1 / 5 shared
Pearce, Chris
1 / 2 shared
Zhou, Xiaoyi
1 / 1 shared
Kaczmarczyk, Lukasz
8 / 8 shared
Kaczmarczyk, Ł.
1 / 2 shared
Pearce, C. J.
2 / 4 shared
Harkin-Jones, Eileen
2 / 46 shared
Zhou, X.-Y.
1 / 1 shared
Archer, Edward
2 / 15 shared
Mcilhagger, Alistair
2 / 18 shared
Pearce, Christopher
3 / 3 shared
Evernden, M. C.
1 / 2 shared
Grammatikos, S. A.
1 / 6 shared
Kaczmarczyk, L.
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019
2018
2017
2016
2015
2014

Co-Authors (by relevance)

  • Burhan, Mohammad
  • Mccreight, T.
  • Sands, Caitlin
  • Kazancı, Zafer
  • Catalanotti, Giuseppe
  • Scalici, Tommaso
  • Falzon, Brian George
  • Scalici, Tommasso
  • Kaczmarczyk, Łukasz
  • Athanasiadis, Ignatios
  • Lewandowski, Karol
  • Pearce, Chris J.
  • Shvarts, Andrei G.
  • Wan, Lei
  • Millen, Scott
  • Aravand, M. Ali
  • Falzon, Brian
  • Allegri, Giuliano
  • Hayat, Khazar
  • Ahmad, Zeshan
  • Siddique, Shafaqat
  • Pearce, Chris
  • Zhou, Xiaoyi
  • Kaczmarczyk, Lukasz
  • Kaczmarczyk, Ł.
  • Pearce, C. J.
  • Harkin-Jones, Eileen
  • Zhou, X.-Y.
  • Archer, Edward
  • Mcilhagger, Alistair
  • Pearce, Christopher
  • Evernden, M. C.
  • Grammatikos, S. A.
  • Kaczmarczyk, L.
OrganizationsLocationPeople

document

Multi-Scale Computational Homogenisation of the Fibre-Reinforced Polymer Composites Including Matrix Damage and Fibre-Matrix Decohesion

  • Ullah, Zahur
  • Pearce, Christopher
  • Kaczmarczyk, Lukasz
Abstract

A three-dimensional multi-scale computational homogenisation model was developed for the prediction of the nonlinear micro-mechanical response of the fibre-reinforced polymer composite. The two dominant damage mechanisms [1], i.e. matrix damage and fibre-matrix decohesion were considered and modelled using pressure dependent thermodynamically consistent paraboloidal yield criterion and cohesive elements respectively. A linear-elastic transversely isotropic materials model was used to model yarns within the representative volume element (RVE), the principal directions for which were calculated using a potential flow analysis along these yarns. A unified approach [2] was used to impose the RVE boundary conditions, which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. The developed computational model was implemented within the framework of the hierarchic finite element, which permits the use of arbitrary order of approximation leading to accurate results for relatively coarse meshes. Furthermore, the computational framework was designed to take advantage of distributed memory high-performance computing. The accuracy and efficiency of the developed computational framework were validated with multi-fibre multi-layer M2RVE [3] and single layered plain weave textile composite RVE. In the case of M2RVE, each layer within laminate was represented by a cube with randomly distributed but axially aligned fibres of equal diameters. Elliptical cross sections and cubic splines were used respectively to model the cross sections and paths of the yarns within the textile RVE. The homogenised stress-strain response was validated against the experimental and reference results from the literature. Initiation and propagation of the fibre-matrix interfacial decohesion were also studied. Moreover, the developed computational framework was used to study the effect of fibre-matrix decohesion strength on the homogenised stress-strain response. <br/><br/><br/>Keywords: finite element analysis, fibre reinforced polymer, multiscale computational homogenisation, cohesive zone models, computational plasticity.<br/><br/>References<br/><br/>[1] C. González and J. LLorca. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling." Composites Science and Technology 67(13): 2795-2806, 2007. <br/><br/>[2] Z. Ullah, Ł. Kaczmarczyk, S. A. Grammatikos, M. C. Evernden and C. J. Pearce. Multi-scale computational homogenisation to predict the long-term durability of composite structures. Computers and Structures, 2015 (Under Review).<br/><br/>[3] G. Soni, R. Singh, M. Mitra and B. G. Falzon. Modelling matrix damage and fibre–matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M 2 RVE). International Journal of Solids and Structures, 51(2), 449-461, 2014<br/>

Topics
  • polymer
  • strength
  • layered
  • composite
  • plasticity
  • isotropic
  • durability
  • interfacial
  • finite element analysis
  • aligned