People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Price, Mark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2015Predicting the crushing behaviour of composite material using high-fidelity finite element modellingcitations
- 2014Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stabilitycitations
- 2014Energy monitoring and quality control of a single screw extrudercitations
- 2014Investigation of the process energy demand in polymer extrusion: a brief review and an experimental studycitations
- 2014Influence of Boundary Conditions on the Low Velocity Impact Damage Carbon Fibre Reinforced Plastic Plates (ICTWS2014-0501)
- 2014Low-cost Process monitoring for polymer extrusion
- 2013Integrating allowable design strains in composites with whole life valuecitations
- 2013Experimental investigation of thermoforming carbon fibre-reinforced polyphenylene sulphide compositescitations
- 2012Thermoforming carbon fibre-reinforced thermoplastic compositescitations
- 2012Digital Methods for Process Development in Manufacturing and Their Relevance to Value Driven Designcitations
- 2011The theoretical prediction of thermoformed carbon fibre reinforced thermoplastic materials in support of optimal process designcitations
- 2011Part form prediction methods for carbon fibre reinforced thermoplastic composite materials
- 2010Development of a digital methodology for composite process & manufacture in aerospace assembliescitations
- 2006Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panelscitations
- 2006The Characterization of Friction Stir Welding Process Effects on Stiffened Panel Buckling Performance
Places of action
Organizations | Location | People |
---|
conferencepaper
The Characterization of Friction Stir Welding Process Effects on Stiffened Panel Buckling Performance
Abstract
The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. However, welding processes can introduce undesirable residual stresses and distortions in the final fabricated components, as well as localized loss of mechanical properties at the weld joints. The aim of this research is to determine and characterize the key process effects of advanced welding assembly methods on stiffened panel static strength performance. This in-depth understanding of the relationships between welding process effects and buckling and collapse strength is required to achieve manufacturing cost reductions without introducing structural analysis uncertainties and hence conservative over designed welded panels. This current work is focused at the sub-component level and examines the static strength of friction stir welded multi stiffener panels. The undertaken experimental and computational studies have demonstrated that local skin buckling is predominantly influenced by the magnitude of welding induced residual stresses and associated geometric distortions, whereas panel collapse behavior is sensitive to the lateral width of the physically joined skin and stiffener flange material, the strength of material in the Heat Affected Zone as well as the magnitude of the welding induced residual stresses. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. --- Reaxys Database Information |