People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allsopp, Duncan W. E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019SUBSTRATES FOR SEMICONDUCTOR DEVICES
- 2017Evolution of the m-plane Quantum Well Morphology and Composition within a GaN/InGaN Core-Shell Structurecitations
- 2017Growth of GaN epitaxial films on polycrystalline diamond by metal-organic vapor phase epitaxycitations
- 2013Coalescence-induced planar defects in GaN layers grown on ordered arrays of nanorods by metal–organic vapour phase epitaxycitations
- 2012Growth of crack-free GaN epitaxial thin films on composite Si(111)/polycrystalline diamond substrates by MOVPEcitations
- 2011Advances in nano-enabled GaN photonic devices
- 2009Enhanced light extraction by photonic quasi-crystals in GaN blue LEDscitations
Places of action
Organizations | Location | People |
---|
patent
SUBSTRATES FOR SEMICONDUCTOR DEVICES
Abstract
A method of manufacturing a composite substrate for a semiconductor device, the method comprising: selecting a substrate wafer comprising: a first layer of single crystal material suitable for epitaxial growth of a compound semiconductor thereon and having a thickness of 100 mum or less;a second layer having a thickness of no less than 0.5 mum and formed of a material having a lower thermal expansion coefficient than the first layer of single crystal material and/or is formed of a material which has a higher fracture strength than that of the first layer of single crystal material; and a third layer forming a handling wafer on which the first and second layers are disposed, wherein the substrate wafer has an aspect ratio, defined by a ratio of thickness to width, of no less than 0.25/100; growing a first polycrystalline CVD diamond layer on the first layer of single crystal material using a chemical vapour deposition technique to form a composite comprising the substrate wafer bonded to the polycrystalline diamond layer via the first layer of single crystal material, wherein during growth of the first polycrystalline CVD diamond layer a temperature difference at a growth surface between an edge and a centre point thereof is maintained to be no more than 80°C; and removing the second and third layers of the substrate wafer to form a composite substrate comprising the polycrystalline diamond layer directly bonded to the first layer of single crystal material.