People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schlottig, G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Intra-stack sealing of tier interconnects using the interconnect alloycitations
- 2015Nanoparticle assembly and sintering towards all-copper flip chip interconnectscitations
- 2011Delamination Toughness of Cu-EMC Interfaces at Harsh Environment
- 2011Temperature moisture and mode mixity dependent EMC-Copper (oxide) interfacial toughness
- 2010Delamination and combined compound cracking of EMC-copper interfaces
- 2010Temperature moisture and mode mixity dependent EMC- Copper (Oxide) interfacial toughness
- 2010Interfacial fracture parameters of silicon-to-molding compound
- 2010Procedure to determine interfacial toughness of EMC-copper (oxide) interfaces
- 2009How to fabricate specimens for silicon-to-molding compound interface adhesion measurementscitations
- 2009Establishing mixed mode fracture properties of EMC-copper (-oxide) interfaces at various temperaturescitations
- 2009Establishing mixed mode fracture properties of EMC-copper (-oxide) interfaces at various temperaturescitations
- 2008Mixed mode interface characterization considering thermal residual stresscitations
Places of action
Organizations | Location | People |
---|
document
Interfacial fracture parameters of silicon-to-molding compound
Abstract
The rapid diversification in microelectronics forebodes more complex system integration, be it for denser function integration or a span of dimensions between various technologies. Products may include more features, perform faster and be cheaper. With these trends the amount of material layers is increasing. This challenges development to a faster rating of material pairings. Delamination is a major issue among the related reliability aspects. When the design or testing steps are accompanied by simulation, fracture mechanical descriptions are increasingly proving helpful. The parameters needed for simulation have to be measured and should be available for different fracture mode mix angles. We investigated the interfacial fracture toughness of the Epoxy Molding Compound (EMC) to Silicon interface. Although difficult to delaminate we could carry out measurements using the Mixed Mode Chisel setup (MMC) that allowed us to induce different stress states at the crack tip at various external load angles. The samples we derived from the molding process of embedded wafer level ball grid arrays. Therefore we were able to use samples made with the same process as in real packaging. The crack tip position was determined by analysis of displacement results by digital image correlation. In order to interpret the sample reaction for extracting fracture mechanical parameters, adequate numerical modeling and simulation was required. The experiments provided the parameters for the models. Establishing the residual stress state in the materials preceded the interface delamination simulation: a two step interpretation. Residual stresses cannot be neglected; indeed they are part of the challenges to delaminate this interface at all. We found energy release rates increasing with fracture mode mix, and such values close to pure tensile opening at the crack tip. We recommend to exclude data from short crack lengths and to carefully expose the sample flanks. The results promise to extend the available interfacial fracture data soon.