Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osigwe, Emmanuel

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Integrated Gas Turbine System Diagnostics: Components and Sensor Faults Quantification using Artificial Neural Networkcitations

Places of action

Chart of shared publication
Li, Yiguang
1 / 2 shared
Sampath, Suresh
1 / 3 shared
Jombo, Gbanaibolou
1 / 6 shared
Indarti, Dieni
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Li, Yiguang
  • Sampath, Suresh
  • Jombo, Gbanaibolou
  • Indarti, Dieni
OrganizationsLocationPeople

document

Integrated Gas Turbine System Diagnostics: Components and Sensor Faults Quantification using Artificial Neural Network

  • Li, Yiguang
  • Sampath, Suresh
  • Jombo, Gbanaibolou
  • Osigwe, Emmanuel
  • Indarti, Dieni
Abstract

The role of diagnostic systems in gas turbine operations has changed over the past years from asinglesupport troubleshootingmaintenancetoamoreproactiveintegrateddiagnosticsystem.Thishasbecomeso,because detectingandfixingfault(s)ononegasturbinesub-systemcantriggerfalsefault(s)indication,onother component(s) of thegas turbine system,due to interrelationships between data obtained to monitor not only the GTsinglecomponent,butalsotheintegratedcomponentsandsensors.Hence,thereisneedforintegrationof gas turbinesystemdiagnostics.Thepurposeofthispaperistopresentartificialneuralnetworkdiagnostic system(ANNDS)asanintegratedgasturbinesystemdiagnostictoolcapableofquantifyinggasturbinecomponentandsensorfault.Amodelbasedapproachwhichconsistsofanenginemodel,andanassociated parameterestimationalgorithmthatpredictsthedifferencebetweentherealenginedataandtheestimated outputdataisdescribedinthispaper. TheANNDSsystemwastrainedtodetect,isolateandassess component(s) and sensor fault(s) of a singlespool industrial gas turbine GT-PG9171ER. The ANN modelwas construedwith multi-layer feed-forward back propagation network for component fault(s) and auto associative networkforsensorfault(s).Thediagnosticmethodologyadoptedwasanestednetworkstructure,trainedto handlespecificobjectivefunctionofdetecting,isolatingorquantifyingfaults.Thedatausedfortraining,and testingpurposeswereobtainedfromanon-linear aero-thermodynamicmodelusingPYTHIA;aCranfieldUniversityin-housesoftware.Thedatasetanalyzedinthispaperrepresentsamplesofcleanandfaulty gas turbinecomponentscausedbyfouling(0.5% -6% degradation)andsensorfault(s)duetobias (±1% -±7%). The results show the capability of ANN to detect, isolate (classification) and quantify multiple faults if properly trained <br/><br/>Integrated Gas Turbine System Diagnostics: Components and Sensor Faults Quantification using Artificial Neural Network | Request PDF. Available from: https://www.researchgate.net/publication/319645027_Integrated_Gas_Turbine_System_Diagnostics_Components_and_Sensor_Faults_Quantification_using_Artificial_Neural_Network [accessed Oct 24 2018].

Topics