Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Casonato, Alberto

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 20213D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibilitycitations
  • 2019Evaluating strength of 3D printed screw threads for patient-specific osteosynthesis platescitations

Places of action

Chart of shared publication
Gill, H. S.
2 / 18 shared
Macleod, Alisdair
2 / 4 shared
Taylor, Ryan
2 / 2 shared
Patterson, Michael
1 / 3 shared
Harris, Alex
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Gill, H. S.
  • Macleod, Alisdair
  • Taylor, Ryan
  • Patterson, Michael
  • Harris, Alex
OrganizationsLocationPeople

document

Evaluating strength of 3D printed screw threads for patient-specific osteosynthesis plates

  • Gill, H. S.
  • Macleod, Alisdair
  • Taylor, Ryan
  • Casonato, Alberto
  • Patterson, Michael
  • Harris, Alex
Abstract

Objectives: The angular stability of locking screws has made them ubiquitous in osteosynthesis plates, due to the importance of maintaining the correction during the course of healing. Bespoke and personalised implants have been made possible by advances in additive manufacture using titanium alloy, however, printed threads are a challenging feature to incorporate in additively manufactured parts due to the feature size in comparison to the main part. This study evaluated the potential to print locking screw threads within an osteosynthesis plate. <br/>Methods: Tapered, double-start threaded Ti-6A-4V screws were custom-made to similar dimensions to the most commonly available locking screws on the market: 6.5mm maximum head diameter, 0.5mm pitch threads and 14 degree total taper angle. One hundred and nine corresponding female threaded specimens were additively manufactured (Renishaw PLC, UK) at different build orientations: 0°, 20°, 45° and 90° with different numbers of threads: 3, 4, 5 and 6. An initial power study determined that at least n=8 per group was required for a power of 80%. The main outcome measure was the ‘thread capacity’ defined as the maximum force recorded during destructive push-out testing of the screwsample threaded interlock (strain rate according to ISO6892-1:2016). Mann-Whitney statistical test was used to evaluate the differences between the groups.<br/>Results: A steeper orientation of build direction was generally found to increase the thread capacity for any number of threads. A 90° build orientation was found to produce significantly (p=0.029) larger thread capacity than 0° for all thread numbers. The mean capacity of 5 threads was 2886±584N for 0° build orientation compared to 1435±407N for 90°. Increasing thread numbers increased the thread capacity by 202.3±86.7N per thread for 90° orientation.<br/>Conclusion: The build orientation significantly influenced the thread capacity and we found that a vertical build orientation is superior for push-out thread resistance, however, there was a large variability in thread capacity. We examined a worst-case scenario; in reality the threads would be exposed to a combination of shear and bending.<br/>

Topics
  • impedance spectroscopy
  • strength
  • titanium
  • titanium alloy