People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petersmann, Sandra
Carinthia University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Multi-Material Implant Structures with Medical-Grade Polyurethane via Additive Manufacturingcitations
- 2023Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditionscitations
- 2023Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jettingcitations
- 2023Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylenecitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid
- 2022Multimaterial Extrusion-Based Additive Manufacturing of Compliant Crack Arrestercitations
- 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabrication
- 2022The Effects of Washing and Formaldehyde Sterilization on the Mechanical Performance of Poly(methyl Methacrylate) (PMMA) Parts Produced by Material Extrusion-Based Additive Manufacturing or Material Jettingcitations
- 2021Morphology and Weld Strength of a Semi-Crystalline Polymer Produced via Material Extrusion-Based Additive Manufacturing
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Processcitations
- 2018Material Development and Modelling of a Thermal Insulation Film in Battery Systems
Places of action
Organizations | Location | People |
---|
document
Material Development and Modelling of a Thermal Insulation Film in Battery Systems
Abstract
The thermal management of battery systems is becoming increasingly important with the gaining demand of electric vehicles. Nonetheless, no convincing solutions for thermal insulation foils are able to avoid thermally initiated chain reactions between adjacent battery modules in the event of thermal runaway. Therefore, the aim is to develop an innovative thermal insulation membrane. The main idea is to design a material exhibiting decreasing thermal conductivity properties with increasing temperatures. This material behaviour is caused by expandable flake graphite, a form of intercalated graphite. Due to the expansion process, the free volume increases resulting in a reduced thermal conductivity of the material. The expansion of the utilized flake graphite is starting at temperatures around 150°C. The flakes and further additives are embedded into a dual-component silicone resin.During the product development, a number of different material tests are performed in order to characterize the material behaviour at different conditions. Evaluation of the thermal stability of the insulating foil is of paramount importance in the design process. Furthermore, uniaxial tensile and compression as well as biaxial tensile tests are conducted with different mid-layer configurations of the insulation composite to analyse the influence of different fillers. Additionally, the test data is made use of to determine the parameters of known hyperelastic material models for the matrix material. Uniaxial compression tests in addition to the standard uniaxial tensile tests are performed as the insulating layers primarily absorb compressive loads.