Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Claeys, Philippe

  • Google
  • 6
  • 21
  • 35

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Artificial weathering of an ordinary chondrite8citations
  • 2019Two generations of exsolution lamellae in pyroxene from Asuka 09545: Clues to the thermal evolution of silicates in mesosiderite7citations
  • 2019The tale of pyroxene in mesosiderite ASUKA 09545, inferred from two generations of exsolution lamellaecitations
  • 2019Evaluating the impact of acetic acid chemical pre-treatment on ‘old’ and cremated bone with the ‘Perio-spot’ technique and ‘Perios-endos’ profiles20citations
  • 2016Orbital component extraction by time-variant sinusoidal modelingcitations
  • 2014TEM investigation of shock-induced polymorphic transformation of olivinecitations

Places of action

Chart of shared publication
Ginneken, Matthias Van
1 / 1 shared
Ceukelaire, Marleen De
1 / 1 shared
Goderis, Steven
1 / 3 shared
Woodland, Alan B.
1 / 1 shared
Wozniakiewicz, Penelope
1 / 1 shared
Debaille, Vinciane
4 / 4 shared
Leduc, Thierry
1 / 2 shared
Decrée, Sophie
1 / 2 shared
Mckibbin, Seann
2 / 2 shared
Pittarello, Lidia
3 / 3 shared
Ji, Gang
3 / 19 shared
Yamaguchi, Akira
3 / 4 shared
Schryvers, Dominique
3 / 45 shared
Snoeck, Christophe
1 / 2 shared
De Winter, Niels
1 / 1 shared
Weis, Dominique
1 / 1 shared
Mcmillan, Rhy
1 / 1 shared
Vleeschouwer, David De
1 / 1 shared
Sinnesael, Matthias
1 / 1 shared
Zivanovic, Miroslav
1 / 1 shared
Schoukens, Johan
1 / 6 shared
Chart of publication period
2022
2019
2016
2014

Co-Authors (by relevance)

  • Ginneken, Matthias Van
  • Ceukelaire, Marleen De
  • Goderis, Steven
  • Woodland, Alan B.
  • Wozniakiewicz, Penelope
  • Debaille, Vinciane
  • Leduc, Thierry
  • Decrée, Sophie
  • Mckibbin, Seann
  • Pittarello, Lidia
  • Ji, Gang
  • Yamaguchi, Akira
  • Schryvers, Dominique
  • Snoeck, Christophe
  • De Winter, Niels
  • Weis, Dominique
  • Mcmillan, Rhy
  • Vleeschouwer, David De
  • Sinnesael, Matthias
  • Zivanovic, Miroslav
  • Schoukens, Johan
OrganizationsLocationPeople

document

Orbital component extraction by time-variant sinusoidal modeling

  • Vleeschouwer, David De
  • Claeys, Philippe
  • Sinnesael, Matthias
  • Zivanovic, Miroslav
  • Schoukens, Johan
Abstract

Accuratelydecipheringperiodicvariationsinpaleoclimateproxysignalsisessentialforcyclostratigraphy.Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This techniquehasnouniquesolutionseparatingvariationsinamplitudeandfrequency.Thischaracteristicmakesitdifficulttocorrectlyinterpretaproxy’spowerspectrumortoaccuratelyevaluatesimultaneouschangesinamplitudeand frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach toestimateinstantaneousamplitudeandfrequencyinorbitalcomponents.Thisapproachhasbeenprovenusefulto characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens,2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference isthe frequency relationship between the different components. A harmonic frequency relationship exists in audiosignals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevantfor the problem at hand.Usingaslidingwindowapproach,themodelcapturestimevariationsofanorbitalcomponentbymodulat-ing a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters thatdetermine the model are the mean frequency of the orbital component and the polynomial coefficients. The firstparameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. Asan output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore,itallowsforauniquedecompositionofthesignalintoitsinstantaneousamplitudeandfrequency.Frequencymodulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation canbeusedtoreconstructe.g.eccentricity-modulatedprecession.Thetime-variantsinusoidalmodelisappliedtowell-established Pleistocene benthic isotope records to evaluate its performance.<br/><br/>ZivanovicM.andSchoukensJ.(2010)OnThePolynomialApproximationforTime-VariantHarmonicSignal Modeling. IEEE Transactions On Audio, Speech, and Language Processing vol. 19, no. 3, pp. 458–467.Doi: 10.1109/TASL.2010.2049673.ZivanovicM.andSchoukensJ.(2012)SingleandPiecewisePolynomialsforModelingofPitchedSounds.IEEETransactionsOnAudio,Speech,andLanguageProcessingvol.20,no.4,pp.1270–1281.Doi:10.1109/TASL.2011.2174228.

Topics
  • impedance spectroscopy
  • extraction