People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mitchell, Thomas
University College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021ESHRE guideline: medically assisted reproduction in patients with a viral infection/diseasecitations
- 2018Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experiments
- 2018Quantifying the effect of core plug edge effects on porosity and permeability under uniaxial and triaxial loading conditions
- 2018Low-Frequency Measurements of Seismic Velocity and Attenuation in Antigorite Serpentinite
- 2018Fault Reactivation at the Brittle-Ductile Transition
- 2017Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experiments
- 2016The effect of fluids on the frictional behavior of calcite gouge
- 2013Deformation band-like defects as possible precursors to microfracture planes, resulting in the generation of nanopowders on simulated fault planes
- 2013Strain localization in experimentally sheared gouge layers
- 2012Frictional processes in volcanic conduits
- 2011Ultra-low co-seismic stiffness of fault rocks at seismogenic (8-11 km) depth
Places of action
Organizations | Location | People |
---|
document
Frictional processes in volcanic conduits
Abstract
The ascent of high-viscosity magma in upper conduits proceeds via the development of shear zones, which commonly fracture, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. Frictional slip in conduits may occur along magma-rock, rock-rock and magma-magma interfaces, with or without the presence of gouge material. During slip, frictional work is converted to heat, which may result in strong geochemical disequilibria as well as rheological variations, with important consequences on the dynamics of magma ascent. Here, we present a thermo-mechanical study on the ability of volcanic rocks (with different proportions of interstitial glass, crystals and vesicles) to sustain friction, and in some cases to melt, using a high-velocity rotary apparatus. The friction experiments were conducted at a range of slip velocities (1.3 mm/s to 1.3 m/s) along a (fault) plane subjected to different normal stresses (0.5-10 MPa). We observe that the behaviour of volcanic rocks during slip events varies remarkably. Frictional slip along dense crystal-rich rocks is characterized by the occurrence of comminution, commonly followed by melting. In contrast, slip along dense glass rocks rarely proceeds along a discrete plane - a glass subjected to slip tends to shatter as temperature enters the glass transition interval. Alternatively, glass can be slipped against a crystalline material. In the case of porous material, slip generally results in rapid abrasion of the porous material, producing a high amount of ash particles. The inability of the material to preserve its slip surface inhibits the generation of significant heat. Finally, during experiments in which ash gouge occupies the slip zone, friction generates a modest amount of heat and does not induce significant comminution along the slip plane. Mechanically, the frictional coefficients of the tested volcanic material vary significantly, depending whether the material may sustain slip (and comminute and melt) or whether it abrades or fails. We discuss the implications of our findings to case studies of lava dome eruptions....