People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mitchell, Thomas
University College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021ESHRE guideline: medically assisted reproduction in patients with a viral infection/diseasecitations
- 2018Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experiments
- 2018Quantifying the effect of core plug edge effects on porosity and permeability under uniaxial and triaxial loading conditions
- 2018Low-Frequency Measurements of Seismic Velocity and Attenuation in Antigorite Serpentinite
- 2018Fault Reactivation at the Brittle-Ductile Transition
- 2017Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experiments
- 2016The effect of fluids on the frictional behavior of calcite gouge
- 2013Deformation band-like defects as possible precursors to microfracture planes, resulting in the generation of nanopowders on simulated fault planes
- 2013Strain localization in experimentally sheared gouge layers
- 2012Frictional processes in volcanic conduits
- 2011Ultra-low co-seismic stiffness of fault rocks at seismogenic (8-11 km) depth
Places of action
Organizations | Location | People |
---|
document
Ultra-low co-seismic stiffness of fault rocks at seismogenic (8-11 km) depth
Abstract
During the seismic cycle, elastic stiffness limits the amount of elastic strain energy stored in the wall rocks bordering a fault. Elastic stiffness of fault zone rocks is expected to be highly variable during the seismic cycle due to complicated damage and healing processes. In addition to longer-term alteration which may take place during exhumation, it is impossible to assess how well rock stiffness as measured in the laboratory represents in situ, coseismic rock stiffness at seismogenic depths. Here we estimate the in situ, coseismic rock stiffness of fault rocks from the pseudotachylyte-bearing Gole Larghe Fault Zone of the Adamello Batholith, Italian Southern Alps, using aspect ratio measurements of pseudotachylyte injection veins and numerical Displacement Discontinuity Method simulations. Aspect ratios of over 100 pseudotachylyte injection veins which cut across tonalite, cataclasite, or aplite show that maximum vein aperture is linearly related to vein length. To model vein opening, the fault and the injection vein are assumed to be filled with melt that has a fluid pressure P. Consistent with recent results from modeling of melt lubrication we assume that the magnitude of the fluid pressure P is exactly the same as the fault-normal normal stress such that the fault vein approximately maintains constant thickness during slip (i.e. melt extrusion exactly balances melt production). This model assumes that melt is injected into the sidewall without significant fluid overpressure, taking advantage of pre-existing planes of weakness and transiently reduced fault-parallel normal stress in the wake of the earthquake rupture tip. Numerical simulations of injection vein opening due to fluid pressure of frictional melt indicate that the average in situ coseismic stiffness of the fault rocks ranged from 2-15 GPa, about a factor of two less than typical laboratory measurements of the same rocks, and the stiffness of tonalite and cataclasite are markedly different....