Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mitchell, Thomas

  • Google
  • 11
  • 57
  • 28

University College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2021ESHRE guideline: medically assisted reproduction in patients with a viral infection/disease28citations
  • 2018Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experimentscitations
  • 2018Quantifying the effect of core plug edge effects on porosity and permeability under uniaxial and triaxial loading conditionscitations
  • 2018Low-Frequency Measurements of Seismic Velocity and Attenuation in Antigorite Serpentinitecitations
  • 2018Fault Reactivation at the Brittle-Ductile Transitioncitations
  • 2017Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experimentscitations
  • 2016The effect of fluids on the frictional behavior of calcite gougecitations
  • 2013Deformation band-like defects as possible precursors to microfracture planes, resulting in the generation of nanopowders on simulated fault planescitations
  • 2013Strain localization in experimentally sheared gouge layerscitations
  • 2012Frictional processes in volcanic conduitscitations
  • 2011Ultra-low co-seismic stiffness of fault rocks at seismogenic (8-11 km) depthcitations

Places of action

Chart of shared publication
Meredith, Philip
2 / 6 shared
Browning, John
2 / 2 shared
Daoud, Ali
1 / 1 shared
Jefferd, Mark
1 / 3 shared
Healy, David
1 / 3 shared
Harland, Sophie
1 / 1 shared
Brantut, N.
2 / 5 shared
Hansen, L. N.
1 / 1 shared
Jackson, I.
1 / 7 shared
David, E.
1 / 10 shared
Meyer, G.
1 / 16 shared
Meredith, P. G.
1 / 2 shared
Daoud, A.
1 / 3 shared
Browning, J.
1 / 1 shared
Smith, S. A. F.
1 / 1 shared
Rempe, M.
2 / 2 shared
Renner, J.
2 / 3 shared
Hirose, T.
2 / 2 shared
Di Toro, G.
4 / 7 shared
Toy, V. G.
1 / 1 shared
Wirth, R.
1 / 7 shared
Smith, S. A.
1 / 1 shared
Petrakova, L.
1 / 1 shared
Lavallee, Y.
1 / 1 shared
Kendrick, J. E.
1 / 1 shared
Hess, K.
1 / 1 shared
Dingwell, D. B.
1 / 6 shared
Heap, M. J.
1 / 5 shared
Griffith, W. A.
1 / 1 shared
Chart of publication period
2021
2018
2017
2016
2013
2012
2011

Co-Authors (by relevance)

  • Meredith, Philip
  • Browning, John
  • Daoud, Ali
  • Jefferd, Mark
  • Healy, David
  • Harland, Sophie
  • Brantut, N.
  • Hansen, L. N.
  • Jackson, I.
  • David, E.
  • Meyer, G.
  • Meredith, P. G.
  • Daoud, A.
  • Browning, J.
  • Smith, S. A. F.
  • Rempe, M.
  • Renner, J.
  • Hirose, T.
  • Di Toro, G.
  • Toy, V. G.
  • Wirth, R.
  • Smith, S. A.
  • Petrakova, L.
  • Lavallee, Y.
  • Kendrick, J. E.
  • Hess, K.
  • Dingwell, D. B.
  • Heap, M. J.
  • Griffith, W. A.
OrganizationsLocationPeople

document

The effect of fluids on the frictional behavior of calcite gouge

  • Smith, S. A. F.
  • Rempe, M.
  • Renner, J.
  • Hirose, T.
  • Di Toro, G.
  • Mitchell, Thomas
Abstract

The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by non-frictional processes, such as grain-boundary sliding aided by diffusion creep....

Topics
  • impedance spectroscopy
  • pore
  • surface
  • amorphous
  • Carbon
  • grain
  • phase
  • scanning electron microscopy
  • experiment
  • laser emission spectroscopy
  • crack
  • strength
  • Raman spectroscopy
  • creep