Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mitchell, Thomas

  • Google
  • 11
  • 57
  • 28

University College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2021ESHRE guideline: medically assisted reproduction in patients with a viral infection/disease28citations
  • 2018Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experimentscitations
  • 2018Quantifying the effect of core plug edge effects on porosity and permeability under uniaxial and triaxial loading conditionscitations
  • 2018Low-Frequency Measurements of Seismic Velocity and Attenuation in Antigorite Serpentinitecitations
  • 2018Fault Reactivation at the Brittle-Ductile Transitioncitations
  • 2017Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experimentscitations
  • 2016The effect of fluids on the frictional behavior of calcite gougecitations
  • 2013Deformation band-like defects as possible precursors to microfracture planes, resulting in the generation of nanopowders on simulated fault planescitations
  • 2013Strain localization in experimentally sheared gouge layerscitations
  • 2012Frictional processes in volcanic conduitscitations
  • 2011Ultra-low co-seismic stiffness of fault rocks at seismogenic (8-11 km) depthcitations

Places of action

Chart of shared publication
Meredith, Philip
2 / 6 shared
Browning, John
2 / 2 shared
Daoud, Ali
1 / 1 shared
Jefferd, Mark
1 / 3 shared
Healy, David
1 / 3 shared
Harland, Sophie
1 / 1 shared
Brantut, N.
2 / 5 shared
Hansen, L. N.
1 / 1 shared
Jackson, I.
1 / 7 shared
David, E.
1 / 10 shared
Meyer, G.
1 / 16 shared
Meredith, P. G.
1 / 2 shared
Daoud, A.
1 / 3 shared
Browning, J.
1 / 1 shared
Smith, S. A. F.
1 / 1 shared
Rempe, M.
2 / 2 shared
Renner, J.
2 / 3 shared
Hirose, T.
2 / 2 shared
Di Toro, G.
4 / 7 shared
Toy, V. G.
1 / 1 shared
Wirth, R.
1 / 7 shared
Smith, S. A.
1 / 1 shared
Petrakova, L.
1 / 1 shared
Lavallee, Y.
1 / 1 shared
Kendrick, J. E.
1 / 1 shared
Hess, K.
1 / 1 shared
Dingwell, D. B.
1 / 6 shared
Heap, M. J.
1 / 5 shared
Griffith, W. A.
1 / 1 shared
Chart of publication period
2021
2018
2017
2016
2013
2012
2011

Co-Authors (by relevance)

  • Meredith, Philip
  • Browning, John
  • Daoud, Ali
  • Jefferd, Mark
  • Healy, David
  • Harland, Sophie
  • Brantut, N.
  • Hansen, L. N.
  • Jackson, I.
  • David, E.
  • Meyer, G.
  • Meredith, P. G.
  • Daoud, A.
  • Browning, J.
  • Smith, S. A. F.
  • Rempe, M.
  • Renner, J.
  • Hirose, T.
  • Di Toro, G.
  • Toy, V. G.
  • Wirth, R.
  • Smith, S. A.
  • Petrakova, L.
  • Lavallee, Y.
  • Kendrick, J. E.
  • Hess, K.
  • Dingwell, D. B.
  • Heap, M. J.
  • Griffith, W. A.
OrganizationsLocationPeople

document

Quantifying the effect of core plug edge effects on porosity and permeability under uniaxial and triaxial loading conditions

  • Meredith, Philip
  • Jefferd, Mark
  • Healy, David
  • Harland, Sophie
  • Mitchell, Thomas
  • Browning, John
Abstract

Since Hawkes and Mellor (1970) it has been recognised that uneven stress distributions occur within a core during loading in the laboratory due to edge effects generated by the interface between the loading platen and the rock sample. Although these effects can be minimised by following ISRM standards of sample preparation and test conditions, the effect cannot be fully removed. While these edge effects are recognised in stress, the impact that the varying stress distribution has on the fabric and microstructure of the sample is less well known. Critically, these effects are overlooked when taking bulk petrophysical property measurements - porosity and permeability - of cores during or after a stress test. Bulk property measurements may not be representative of the true variation in these properties that can be found along the core length. If stress is focussed in certain parts of the core leading to inelastic deformation in these areas, it could be expected that a resulting impact on porosity or permeability would be present in those areas. Here we analyse porosity and permeability along the length of stressed cores to determine if the irregular stress distribution as modelled by Hawkes & Mellor (1970) manifests itself in variations in the permeability and porosity. We examine these effects in samples of two different lithologies (low porosity and permeability Lanhellin granite and high porosity and permeability Clashach sandstone) taken to 90% of their failure strength under both uniaxial (σ1 > σ2 > σ3 = 0) and conventional triaxial (σ1 > σ2 = σ3) loading conditions, to examine the impact of both loading and lithology. Cores of each lithology were prepared according to ISRM standards. Each core was pre-characterised for bulk gas porosity (helium) and permeability (nitrogen). Six cores of each lithology were taken to failure under axial compression at three different confining pressures (0MPa, 25 MPa and 50 MPa) to determine the ultimate failure strength. Acoustic emission detection was also utilised to determine damage onset in each test. Subsequently six cores (two at each confining pressure) were subjected to 90% of the failure strength to induce inelastic deformation (microcracking) into the core plugs. At this level of stress, inelastic deformation in the form of microcracking has been induced into the sample as evidenced by the generation of acoustic emissions. To examine the variation in permeability and porosity along the core length, the cores were serially sectioned into eight segments with porosity and permeability data acquired for each segment. The variation in porosity and permeability along the length of the stressed cores is compared to a non-stressed sample that has undergone the same analysis. The results of this study can be used to understand how microstructural variations along a core length that result from uneven stress distributions can affect porosity and permeability magnitudes. These results have implications for how bulk porosity and permeability data acquired for stressed samples should be contextualised with respect to the way stress is distributed within the sample....

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • Nitrogen
  • strength
  • permeability
  • acoustic emission
  • porosity