People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lindsay, Robert
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Sweet Corrosion Scale: Structure and Energetics of Siderite Facetscitations
- 2022Corrosion Inhibition in Acidic Environments: Key Interfacial Insights with Photoelectron Spectroscopycitations
- 2020An Exemplar Imidazoline Surfactant for Corrosion Inhibitor Studies:Synthesis, Characterization, and Physicochemical Propertiescitations
- 2019Corrosion protection through naturally occurring films: new insights from iron carbonatecitations
- 2017Structure of the SnO2(110)-(4 x 1) Surfacecitations
- 2017Determining the Chemical Composition of Corrosion Inhibitor/Metal Interfaces with XPS: Minimizing Post Immersion Oxidationcitations
- 2017Structure of the SnO2(110)-(4 × 1) surfacecitations
- 2017Structure of the SnO2 (110)- (4×1) Surfacecitations
- 2015Microscopic study of the corrosion behaviour of mild steel in ionic liquids for CO2 capture applicationscitations
- 2015In Situ Grazing Incidence X-ray Diffraction of Sweet Corrosion Scaling on Carbon Steel
- 2014Corrosion behaviour of mild steel in 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids for CO2 capture applications
- 2014Corrosion Inhibition Performance of 2-Mercaptobenzimidazole in Sweet Oilfield Conditions
- 2005Revisiting the surface structure of TiO2(110): A quantitative low-energy electron diffraction studycitations
- 2004ZnO(0001̄)-O surface structure:Hydrogen-free (1 × 1) terminationcitations
- 2004ZnO(0001̄)-O surface structurecitations
Places of action
Organizations | Location | People |
---|
article
Corrosion behaviour of mild steel in 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids for CO2 capture applications
Abstract
The corrosion behaviour of mild steel (MS) was systematically investigated as a function of the alkyl chain length in the cation of 1-alkyl-3-methylimidazolium tricyanomethanide ([C(n)mim]TCM, n = 2, 4, 6 and 8) ionic liquids (ILs) with respect to their potential application as a structural material and solvents for CO2 capture plants respectively. The surface of MS was examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and micro-Raman mapping before and after immersion testing at temperatures of 70 and 80 degrees C for durations varying from 1 hour to 10 days. Corrosion initiates at the sites of MnS inclusions on the surface of MS, resulting in the formation of cavities due to the MnS dissolution, which may be surrounded by corrosion products containing magnetite (Fe3O4) and maghemite (gamma-Fe2O3). The amount of the corrosion products generated around the inclusion sites decreased with the increase of the cation alkyl chain length, following the order [C(2)mim]TCM > [C(4)mim] TCM > [C(6)mim] TCM approximate to [C(8)mim]TCM. This was attributed to the corrosion inhibition effect of the ILs through adsorption on the metal surface and blocking active sites, with the inhibition efficiency increasing with the alkyl chain length. The underlying mechanism was associated with corrosion processes at active sites on the MS surface, such as sulphide inclusions, in the presence of residual water and oxygen in the IL. It was shown that increase of the water content in the ILs to about 50 000 ppm resulted in faster dissolution of the MnS inclusions. Finally, it was demonstrated that removal of oxygen from the IL significantly reduced the corrosion rate.