Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duplan, Yannick

  • Google
  • 11
  • 11
  • 22

Université Grenoble Alpes

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2021Investigation of the multiple-fragmentation process and post-fragmentation behaviour of dense and nacre-like alumina ceramics by means of tandem impact experiments and tomographic analysis ; Examination du processus de fragmentation multiple et du comportement post-fragmentation de céramiques d'alumine dense et nacrée au moyen d'expériences d'impact tandem et d'analyse tomographique15citations
  • 2021Ultra-high speed X-ray imaging of dynamic fracturing in cementitious materials under impact ; Imagerie aux rayons X ultra-rapide de la fracturation dynamique dans des matériaux cimentaires sous impact7citations
  • 2020Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlationcitations
  • 2020 Caractérisation expérimentale et modélisation des propriétés de rupture et de fragmentation dynamiques d'un noyau de munition et de céramiques à blindage citations
  • 2020Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlation ; Comparaison de deux techniques de traitement pour caractériser la vitesse de fissuration dynamique dans la céramique de blindage basée sur la corrélation d'images numériquescitations
  • 2019Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample ; Identification des Paramètres du Modèle de Johnson-Cook d'un Noyau de Projectile AB (Anti-Blindage) Basée sur Deux Échantillons Compression-Cisaillement et une Géométrie en Os de Chiencitations
  • 2019Numerical Investigation of Damage and Failure Modes Induced in a Bilayer Configuration Subjected to Ballistic Limit Velocity Testcitations
  • 2019 Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Samplecitations
  • 2018Numerical analysis of a testing technique to investigate the dynamic crack propagation in armour ceramic ; Analyse numérique d'une technique d'essai pour évaluer la propagation dynamique d'une fissure dans les blindages céramiquescitations
  • 2018 Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Samplecitations
  • 2017A testing technique to investigate the dynamic crack propagation in armour ceramic - Numerical analysis through « Rockspall »citations

Places of action

Chart of shared publication
Forquin, Pascal
5 / 18 shared
Rutherford, Michael
1 / 1 shared
Escauriza, Emilio
1 / 2 shared
Eakins, Daniel
1 / 3 shared
Lukić, Bratislav
2 / 6 shared
Rack, Alexander
1 / 18 shared
Blasone, Maria
1 / 1 shared
Chapman, David
1 / 12 shared
Olbinado, Margie
1 / 1 shared
Lukic, Bratislav
1 / 4 shared
Saletti, Dominique
2 / 7 shared
Chart of publication period
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Forquin, Pascal
  • Rutherford, Michael
  • Escauriza, Emilio
  • Eakins, Daniel
  • Lukić, Bratislav
  • Rack, Alexander
  • Blasone, Maria
  • Chapman, David
  • Olbinado, Margie
  • Lukic, Bratislav
  • Saletti, Dominique
OrganizationsLocationPeople

document

Numerical Investigation of Damage and Failure Modes Induced in a Bilayer Configuration Subjected to Ballistic Limit Velocity Test

  • Duplan, Yannick
Abstract

Bilayer armour configurations are designed to defeat Armour-Piercing (AP) projectiles. They consist of a ceramic front plate that aims to shatter and break the impacting threat. Due to its brittleness, the ceramic is combined with a ductile backing plate such as composite for the conversion of debris’ kinetic energy into deformation and delamination [1]. One of the most common testing techniques to evaluate the ballistic performances of ceramics is the ballistic limit velocity test called V50: a projectile is launched onto the ceramic backed with an aluminium alloy or a steel alloy. Using a NATO (North Atlantic Treaty Organization) standard, the probability curve of perforation allows reading the velocity V50 at which the projectile has 50% of probability of perforating the armour [2,3]. During such an impact, the ceramic undergoes three loading stages: (1) triaxial compression, (2) tensile cracking and (3) penetration [1]. In parallel, the AP projectile flows and erodes until capture or full penetration [4]. The penetration process depends on the mechanical strength and damage involved in each stage, making the numerical modelling of such interaction particularly challenging. A series of numerical simulations of V50 test were carried out with Abaqus finite-element code considering the following models: the Johnson-Cook (JC) hardening and damage models [5] is used for the steel-core of an AP projectile, the Johnson-Holmquist-2 (JH-2) model [6] that incorporates a pressure-dependent strength that is considered for representing the mechanical response of the ceramic. In addition, the Denoual-Forquin-Hild (DFH) anisotropic damage model [7,8] is used to simulate the tensile damage generated in the ceramic. The numerical results provide a better understanding of the damage modes induced in the projectile and in the target during the ballistic impact.1. Gooch, W.A., Jr. Ceramic Armor Development - An Overview of Ceramic Armor Applications. In Ceramic armor materials by design; McCauley, J.W., Ed.; Ceramic transactions; The American Ceramic Society: Westerville, Ohio, 2002; pp. 3–23 ISBN 978-1-57498-148-3. 2. Normandia, M.; Gooch, W.A., Jr. Penetration and Ballistic Testing - An Overview of Ballistic Testing Methods of Ceramic Materials. In Ceramic armor materials by design; McCauley, J.W., Ed.; Ceramic transactions; The American Ceramic Society: Westerville, Ohio, 2002; pp. 3–23 ISBN 978-1-57498-148-3. 3. Johnson, T.; Freeman, L.; Hester, J.; Bell, J. Ballistic Resistance Testing Techniques - IDA (Institute for Defense Analyses) Research Notes. 4. Normandia, M.; Lasalvia, J.; Gooch, W.; McCauley, J.W.; Rajendran, A.M. Protecting the Future Force: Ceramics Research Leads to Improved Armor Performance. AMMTIAC 2004, 8. 5. Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. 6. Johnson, G.R.; Holmquist, T.J. An improved computational constitutive model for brittle materials. In Proceedings of the AIP Conference Proceedings; AIP: Colorado Springs, Colorado (USA), 1994; Vol. 309, pp. 981–984. 7. Denoual, C.; Hild, F. A Damage Model for the Dynamic Fragmentation of Brittle Solids. Comput. Methods Appl. Mech. Eng. 2000, 247–258. 8. Forquin, P.; Hild, F. A probabilistic damage model of the dynamic fragmentation process in brittle materials. Adv. Appl. Mech. 2010, 44, 1–72.

Topics
  • impedance spectroscopy
  • simulation
  • aluminium
  • strength
  • anisotropic
  • steel
  • aluminium alloy
  • composite
  • ceramic