Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schwab, Martin

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016High- and low-cycle fatigue influence of silicon, copper, strontium and iron on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder headscitations

Places of action

Chart of shared publication
Renhart, Philipp
1 / 2 shared
Huter, Patrik
1 / 3 shared
Stauder, Bernhard
1 / 4 shared
Grün, Florian
1 / 41 shared
Oberfrank, Stefan
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Renhart, Philipp
  • Huter, Patrik
  • Stauder, Bernhard
  • Grün, Florian
  • Oberfrank, Stefan
OrganizationsLocationPeople

article

High- and low-cycle fatigue influence of silicon, copper, strontium and iron on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads

  • Renhart, Philipp
  • Huter, Patrik
  • Stauder, Bernhard
  • Grün, Florian
  • Oberfrank, Stefan
  • Schwab, Martin
Abstract

In this publication, ambient condition fatigue investigations with different types of Al–Si–Cu and Al–Si–Mg cast alloys in rotating-bending high-cycle fatigue (HCF) and push–pull low-cycle fatigue (LCF) regimes have been performed with varying Si, Cu, Fe and Sr contents. The cast alloys investigated here are common used in cylinder heads for automotive application. Because the cylinder head is one of the most fatigued parts in combustion chamber engines, the microstructural knowledge of the damage process provides a tool of construction and its material selection. The investigations were also supported with an in-situ microstructural crack observation in high plasticity rotating-bending regimes. The specimens were directly processed out of serial produced T79 heat-treated cylinder heads to provide the equal microstructure for testing as under operational conditions.<br/><br/>The observations clearly identified the effects of the individual alloying elements both under low- and high-cycle fatigue. The crack propagation speed and the crack paths were majorly influenced by the eutectic silicon. Additional, the precipitation hardening due to copper affected significantly the fatigue endurance, too. In high plasticities the silicon’s influence got almost lost and only the matrix strength was crucial. Thus, increased fatigue strength in high loaded LCF regimes was observed for alloys with less copper content, thus higher ductility. By contrast, improved HCF and low loaded LCF endurance was only achieved when the matrix strength was increased by copper’s precipitation hardening. Crack branching and deflections strongly influenced the microstructural damage of the ductile AlSi7Mg(Sr) and hence, gained its fatigue strength. Iron phases could not identified as harmful inclusions, since the phases were similar in size of other hard phase elements like the other primary intermetallic phases like Al2CuAl2Cu and β-SiSi phases under notch stress aspects, by the well defined solidification process in the test section. Because the crack nucleation mainly occurred on Si particles, strontium as a refinement agent influenced the early crack onset and accordingly the fatigue in total. Thus, the AlSi6Cu4(Sr) had increased lifetimes compared to AlSi6Cu4 both in HCF and LCF. Further, the presented results provide a modification of the Manson–Coffin approach to describe the relationship between plastic strain and lifetime, valid for all proposed alloys with only one set of parameters. Thus, it was possible to perform the fatigue calculation with a reduced range of scatter.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • inclusion
  • phase
  • laser emission spectroscopy
  • crack
  • strength
  • fatigue
  • Strontium
  • combustion
  • copper
  • Silicon
  • precipitation
  • iron
  • plasticity
  • intermetallic
  • ductility