Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marassi, Stefania

  • Google
  • 3
  • 10
  • 97

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016SN Dust Yields: Fallback, Metallicity and Rotation Impactcitations
  • 2015Supernova dust formation and the grain growth in the early universe: the critical metallicity for low-mass star formation43citations
  • 2015The metal and dust yields of the first massive stars54citations

Places of action

Chart of shared publication
Chieffics, Alessandro
1 / 1 shared
Schneider, Raffaella
3 / 12 shared
Limongi, Marco
3 / 5 shared
Chieffi, Alessandro
2 / 7 shared
Chiaki, Gen
1 / 3 shared
Nozawa, Takaya
1 / 9 shared
Omukai, Kazuyuki
1 / 5 shared
Yoshida, Naoki
1 / 7 shared
Bianchi, Simone
1 / 6 shared
Bocchio, Marco
1 / 1 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Chieffics, Alessandro
  • Schneider, Raffaella
  • Limongi, Marco
  • Chieffi, Alessandro
  • Chiaki, Gen
  • Nozawa, Takaya
  • Omukai, Kazuyuki
  • Yoshida, Naoki
  • Bianchi, Simone
  • Bocchio, Marco
OrganizationsLocationPeople

document

SN Dust Yields: Fallback, Metallicity and Rotation Impact

  • Chieffics, Alessandro
  • Schneider, Raffaella
  • Marassi, Stefania
  • Limongi, Marco
Abstract

Dust is an important ingredient in astrophysical environments as it regulates the physical and chemical conditions of the interstellar medium (ISM). Sites of dust formation are the expanding ejecta of core-collapse SNe. The amount of dust freshly condensed in SN explosions and surviving the subsequent passage of the reverse shock is a key quantity to assess the role of SNe as cosmic dust factories. Dust production in SNe depends on the SN type and on the physical properties of the stellar progenitor, such as its mass, ejecta temperature profile, metallicity and explosion energy. Using detailed pre-supernova and supernova explosion models for rotating and non-rotating progenitors with masses ranging between 13 to 120 M☉ and metallicities in the range 0 < Z/Z☉ < 1 (Limongi & Chieffi 2012, Limongi & Chieffi, in preparation), we investigate dust formation in SN ejecta. We follow nucleation and grain growth, taking into account the evolution of newly condensed grains and their partial destruction through the passage of the reverse shock in the supernova remnant. We assess the impact of stellar rotation and metallicity on the temperature and density profiles of the ejecta, and, as a consequence, on the resulting grain size distribution. Extending the models to the metal-free (Pop III) supernovae, we compute the mass-dependent dust and metal yields and we predict the chemical composition of star forming regions where second generation, low-mass stars form. We then compare the model predictions to the observed surface elemental abundances of carbon-normal and carbon-enhanced metal poor stars, and derive interesting constraints of the mass of Pop III stars and on the properties of the first SNe....

Topics
  • density
  • impedance spectroscopy
  • surface
  • Carbon
  • grain
  • grain size
  • chemical composition
  • forming
  • grain growth