Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Velásquez Yévenes, L.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Enhanced leaching of chalcopyrite at low potentials in chloride solutions 1. Concentratescitations

Places of action

Chart of shared publication
Basson, P.
1 / 1 shared
Miki, H.
1 / 7 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Basson, P.
  • Miki, H.
OrganizationsLocationPeople

document

Enhanced leaching of chalcopyrite at low potentials in chloride solutions 1. Concentrates

  • Basson, P.
  • Velásquez Yévenes, L.
  • Miki, H.
Abstract

It is well known that the leaching of chalcopyrite under ambient conditions is extremely slow even under highly oxidizing conditions. This has been attributed to so-called passivation of the mineral that occurs at potentials above about 0.65 V (SHE). However, previous reports have suggested that the mineral can be more effectively dissolved at lower potentials in sulfate solutions and mechanisismsfor this reaction have been proposed. This paper will report on an extensive study of the kinetics of the dissolution of a number of chalcopyrite concentrates in chloride solutions under various conditions in specially designed reactors with the objective of developing a heap leach process for primary copper sulfide ores.It will be demonstrated that enhanced rates of dissolution can be achieved at ambient temperatures By the application of controlled potentials in the range 560-600 mV, depending on the concentration of chloride ions. However, control of the potential by the use of electrochemical or chemical oxidation of iron(II) or copper (I) ions is ineffective unless carried out in the presence of dissolved oxygen. The rates of dissolution are approximately constant for up to 80% dissolution for sized functions of the concentrates with an activation of energy of about 80 kJ/mole. Chalcopyrite from different sources appears to dissolve at approximately the same rate which is largely independent of the iron and copper ion concentrations, the acidity and chloride ion concentration but depends in some cases on the presence of additives such as fine pyrite.

Topics
  • impedance spectroscopy
  • mineral
  • Oxygen
  • copper
  • leaching
  • iron
  • activation