Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Papagiannis, Grigoris

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Power hardware-in-the-loop setup for developing, analyzing and testing mode identification techniques and dynamic equivalent modelscitations

Places of action

Chart of shared publication
Guillo Sansano, Efren
1 / 1 shared
Syed, Mazheruddin Hussain
1 / 2 shared
Kontis, Eleftherios O.
1 / 1 shared
Papadopoulos, Theofilos A.
1 / 1 shared
Burt, Graeme
1 / 10 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Guillo Sansano, Efren
  • Syed, Mazheruddin Hussain
  • Kontis, Eleftherios O.
  • Papadopoulos, Theofilos A.
  • Burt, Graeme
OrganizationsLocationPeople

document

Power hardware-in-the-loop setup for developing, analyzing and testing mode identification techniques and dynamic equivalent models

  • Papagiannis, Grigoris
  • Guillo Sansano, Efren
  • Syed, Mazheruddin Hussain
  • Kontis, Eleftherios O.
  • Papadopoulos, Theofilos A.
  • Burt, Graeme
Abstract

During the last decades, a significant number of mode identification techniques and dynamic equivalent models have been proposed in the literature to analyze the dynamic properties of transmission grids and active distribution networks (ADNs). The majority of these methods are developed using the measurement-based approach, i.e., by exploiting dynamic responses acquired from phasor measurement units (PMUs). However, there is lack of a common framework in the literature for the performance evaluation of such methods under real field conditions. Aiming to address this gap, in this paper, a power hardware-in-the-loop setup is introduced to generate dynamic responses, suitable for the testing and validation of measurement-based mode identification techniques and dynamic equivalent models. The setup consists of a high voltage transmission grid, two medium voltage distribution grids as well as a low voltage ADN. Using this setup, several disturbances are emulated and the resulting dynamic responses are recorded using PMUs. The measurements are made available to other researchers through a public repository to act as benchmark responses for the evaluation of measurement-based methods.

Topics
  • impedance spectroscopy