Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Makara, M.

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Mechanical reliability of microstructured optical fibers – a comparative study of tensile and bending strengthcitations

Places of action

Chart of shared publication
Sonnenfeld, Camille
1 / 17 shared
Gomina, M.
1 / 11 shared
Sulejmani, Sanne
1 / 16 shared
Skorupsi, K.
1 / 1 shared
Mergo, P.
1 / 16 shared
Thienpont, Hugo
1 / 83 shared
Geernaert, Thomas
1 / 37 shared
Berghmans, Francis
1 / 45 shared
Eve, S.
1 / 10 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Sonnenfeld, Camille
  • Gomina, M.
  • Sulejmani, Sanne
  • Skorupsi, K.
  • Mergo, P.
  • Thienpont, Hugo
  • Geernaert, Thomas
  • Berghmans, Francis
  • Eve, S.
OrganizationsLocationPeople

document

Mechanical reliability of microstructured optical fibers – a comparative study of tensile and bending strength

  • Sonnenfeld, Camille
  • Gomina, M.
  • Sulejmani, Sanne
  • Skorupsi, K.
  • Mergo, P.
  • Thienpont, Hugo
  • Makara, M.
  • Geernaert, Thomas
  • Berghmans, Francis
  • Eve, S.
Abstract

Microstructured optical fibers are increasingly used in optical fiber sensing applications such as for example optical fiber based structural health monitoring. In such an application the fiber may experience substantial mechanical loads and has to remain functional during the entire lifetime of the structure to be monitored. The resistance to different types of mechanical loads has therefore to be characterized in order to assess the maximum stress and strain that a fiber can sustain. In this paper we therefore report on the extensive set of tensile tests and bending experiments that we have conducted both on microstructured optical fibers with an hexagonal air hole lattice and on standard optical fibers. We use Weibull statistics to model the strength distribution of the fibers and we follow a fracture mechanics approach in conjunction with microscopic observations of the fractured end faces to study crack initiation and propagation in both types of fibers. We show that the failure strain of microstructured fibers is about 4.3% as obtained with tensile tests, compared to 6.7% for reference fibers. Although the mechanical strength of microstructured optical fibers is lower than that of the standard fibers it is still adequate for these fibers to be used in many applications.

Topics
  • impedance spectroscopy
  • experiment
  • crack
  • strength