Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Voet, E.

  • Google
  • 16
  • 44
  • 161

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2014Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratingscitations
  • 2013Opportunities for Structural Health Monitoring of Composite Material Structures with Novel Microstructured Optical Fiber Sensorscitations
  • 2012In-situ local strain measurement in textile composites with embedded optical fibre sensorscitations
  • 2011Microstructured optical fiber sensors embedded in a laminate composite for smart material applicationscitations
  • 2011Evaluation of the transversal strain state in a satin weave composite using fibre Bragg gratingscitations
  • 2011Local strain in a 5-harness satin weave composite under static tension: Part I - Experimental analysis58citations
  • 2010Influence of the Internal Yarn Nesting (Shifting) on the Local Structural Response of a Satin Weave Composite-An Experimental and Numerical Overviewcitations
  • 2009On the feasibility of optical fibre sensors for strain monitoring in thermoplastic composites under fatigue loading conditions44citations
  • 2009Strain monitoring of FRP elements using an embedded fibre optic sensor3citations
  • 2009Response of Fiber Bragg Gratings in Microstructured and Bow Tie Fibers Embedded in Laminated Compositecitations
  • 2009Fiber Bragg Gratings in Microstructured Optical Fibers for Stress Monitoringcitations
  • 2009Response of FBGs in Microstructured and Bow Tie Fibers Embedded in Laminated Composite33citations
  • 2009Benchmarking the response of Bragg gratings written in microstructured and bow tie fiber embedded in compositescitations
  • 2009Transversal load sensing with fiber Bragg gratings in microstructured optical fiberscitations
  • 2008The use of optical fibers for fatigue testing of fiber-reinforced thermoplasticscitations
  • 2007Strain monitoring in thermoplastic composites with optical fiber sensors: Embedding process, visualization with micro-tomography, and fatigue results23citations

Places of action

Chart of shared publication
Sonnenfeld, Camille
3 / 17 shared
Luyckx, G.
12 / 25 shared
Sulejmani, Sanne
3 / 16 shared
Lammens, N.
3 / 8 shared
Becker, M.
8 / 27 shared
Chah, K.
3 / 8 shared
Thienpont, Hugo
7 / 83 shared
Geernaert, Thomas
7 / 37 shared
Berghmans, Francis
7 / 45 shared
Degrieck, J.
15 / 143 shared
Collombet, Francis
1 / 31 shared
Bartelt, H.
7 / 12 shared
Mergo, P.
2 / 16 shared
Urbanczyk, W.
7 / 12 shared
Verpoest, I.
3 / 52 shared
Van Paepegem, Wim
9 / 489 shared
De Baere, I.
4 / 51 shared
Daggumati, S.
3 / 13 shared
Lomov, S.
1 / 8 shared
Xu, J.
3 / 23 shared
Eve, S.
1 / 10 shared
Lomov, S. V.
2 / 47 shared
Praet, T.
1 / 3 shared
Verhegghe, B.
1 / 3 shared
Casciati, F.
1 / 1 shared
Vincenzini, P.
1 / 2 shared
De Waele, W.
2 / 12 shared
Vlekken, J.
3 / 12 shared
Nasilowski, Tomasz
4 / 11 shared
Waele, W. De
4 / 7 shared
Chah, Karima
3 / 10 shared
Paepegem, Wim Van
1 / 64 shared
Wojcik, J.
5 / 6 shared
Geernaert, T.
1 / 6 shared
Thienpont, H.
1 / 6 shared
Berghmans, F.
1 / 7 shared
Nasilowski, T.
1 / 2 shared
Terryn, Herman
1 / 124 shared
Anastasopoulos, A.
1 / 5 shared
Solodov, I.
1 / 5 shared
Busse, G.
1 / 10 shared
Vanhemelrijck, D.
1 / 4 shared
Masschaele, B.
1 / 2 shared
Cnudde, V.
1 / 2 shared
Chart of publication period
2014
2013
2012
2011
2010
2009
2008
2007

Co-Authors (by relevance)

  • Sonnenfeld, Camille
  • Luyckx, G.
  • Sulejmani, Sanne
  • Lammens, N.
  • Becker, M.
  • Chah, K.
  • Thienpont, Hugo
  • Geernaert, Thomas
  • Berghmans, Francis
  • Degrieck, J.
  • Collombet, Francis
  • Bartelt, H.
  • Mergo, P.
  • Urbanczyk, W.
  • Verpoest, I.
  • Van Paepegem, Wim
  • De Baere, I.
  • Daggumati, S.
  • Lomov, S.
  • Xu, J.
  • Eve, S.
  • Lomov, S. V.
  • Praet, T.
  • Verhegghe, B.
  • Casciati, F.
  • Vincenzini, P.
  • De Waele, W.
  • Vlekken, J.
  • Nasilowski, Tomasz
  • Waele, W. De
  • Chah, Karima
  • Paepegem, Wim Van
  • Wojcik, J.
  • Geernaert, T.
  • Thienpont, H.
  • Berghmans, F.
  • Nasilowski, T.
  • Terryn, Herman
  • Anastasopoulos, A.
  • Solodov, I.
  • Busse, G.
  • Vanhemelrijck, D.
  • Masschaele, B.
  • Cnudde, V.
OrganizationsLocationPeople

document

Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

  • Sonnenfeld, Camille
  • Luyckx, G.
  • Sulejmani, Sanne
  • Lammens, N.
  • Becker, M.
  • Chah, K.
  • Thienpont, Hugo
  • Geernaert, Thomas
  • Berghmans, Francis
  • Voet, E.
Abstract

The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 mu strain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • experiment
  • simulation
  • composite